Fri, 20 Jan 2006 00:19:53 +0000
[gaim-migrate @ 15309]
Add .cvsignore actions to meanwhile so cvs shuts up about it.
| 12261 | 1 | /* |
| 2 | mpi.c | |
| 3 | ||
| 4 | by Michael J. Fromberger <http://www.dartmouth.edu/~sting/> | |
| 5 | Copyright (C) 1998 Michael J. Fromberger, All Rights Reserved | |
| 6 | ||
| 7 | Arbitrary precision integer arithmetic library | |
| 8 | ||
| 9 | $Id: mpi.c 14563 2005-11-29 23:31:40Z taliesein $ | |
| 10 | */ | |
| 11 | ||
| 12 | #include "mpi.h" | |
| 13 | #include <stdlib.h> | |
| 14 | #include <string.h> | |
| 15 | #include <ctype.h> | |
| 16 | ||
| 17 | #if MP_DEBUG | |
| 18 | #include <stdio.h> | |
| 19 | ||
| 20 | #define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);} | |
| 21 | #else | |
| 22 | #define DIAG(T,V) | |
| 23 | #endif | |
| 24 | ||
| 25 | /* | |
| 26 | If MP_LOGTAB is not defined, use the math library to compute the | |
| 27 | logarithms on the fly. Otherwise, use the static table below. | |
| 28 | Pick which works best for your system. | |
| 29 | */ | |
| 30 | #if MP_LOGTAB | |
| 31 | ||
| 32 | /* {{{ s_logv_2[] - log table for 2 in various bases */ | |
| 33 | ||
| 34 | /* | |
| 35 | A table of the logs of 2 for various bases (the 0 and 1 entries of | |
| 36 | this table are meaningless and should not be referenced). | |
| 37 | ||
| 38 | This table is used to compute output lengths for the mp_toradix() | |
| 39 | function. Since a number n in radix r takes up about log_r(n) | |
| 40 | digits, we estimate the output size by taking the least integer | |
| 41 | greater than log_r(n), where: | |
| 42 | ||
| 43 | log_r(n) = log_2(n) * log_r(2) | |
| 44 | ||
| 45 | This table, therefore, is a table of log_r(2) for 2 <= r <= 36, | |
| 46 | which are the output bases supported. | |
| 47 | */ | |
| 48 | ||
| 49 | #include "logtab.h" | |
| 50 | ||
| 51 | /* }}} */ | |
| 52 | #define LOG_V_2(R) s_logv_2[(R)] | |
| 53 | ||
| 54 | #else | |
| 55 | ||
| 56 | #include <math.h> | |
| 57 | #define LOG_V_2(R) (log(2.0)/log(R)) | |
| 58 | ||
| 59 | #endif | |
| 60 | ||
| 61 | /* Default precision for newly created mp_int's */ | |
| 62 | static unsigned int s_mp_defprec = MP_DEFPREC; | |
| 63 | ||
| 64 | /* {{{ Digit arithmetic macros */ | |
| 65 | ||
| 66 | /* | |
| 67 | When adding and multiplying digits, the results can be larger than | |
| 68 | can be contained in an mp_digit. Thus, an mp_word is used. These | |
| 69 | macros mask off the upper and lower digits of the mp_word (the | |
| 70 | mp_word may be more than 2 mp_digits wide, but we only concern | |
| 71 | ourselves with the low-order 2 mp_digits) | |
| 72 | ||
| 73 | If your mp_word DOES have more than 2 mp_digits, you need to | |
| 74 | uncomment the first line, and comment out the second. | |
| 75 | */ | |
| 76 | ||
| 77 | /* #define CARRYOUT(W) (((W)>>DIGIT_BIT)&MP_DIGIT_MAX) */ | |
| 78 | #define CARRYOUT(W) ((W)>>DIGIT_BIT) | |
| 79 | #define ACCUM(W) ((W)&MP_DIGIT_MAX) | |
| 80 | ||
| 81 | /* }}} */ | |
| 82 | ||
| 83 | /* {{{ Comparison constants */ | |
| 84 | ||
| 85 | #define MP_LT -1 | |
| 86 | #define MP_EQ 0 | |
| 87 | #define MP_GT 1 | |
| 88 | ||
| 89 | /* }}} */ | |
| 90 | ||
| 91 | /* {{{ Constant strings */ | |
| 92 | ||
| 93 | /* Constant strings returned by mp_strerror() */ | |
| 94 | static const char *mp_err_string[] = { | |
| 95 | "unknown result code", /* say what? */ | |
| 96 | "boolean true", /* MP_OKAY, MP_YES */ | |
| 97 | "boolean false", /* MP_NO */ | |
| 98 | "out of memory", /* MP_MEM */ | |
| 99 | "argument out of range", /* MP_RANGE */ | |
| 100 | "invalid input parameter", /* MP_BADARG */ | |
| 101 | "result is undefined" /* MP_UNDEF */ | |
| 102 | }; | |
| 103 | ||
| 104 | /* Value to digit maps for radix conversion */ | |
| 105 | ||
| 106 | /* s_dmap_1 - standard digits and letters */ | |
| 107 | static const char *s_dmap_1 = | |
| 108 | "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; | |
| 109 | ||
| 110 | #if 0 | |
| 111 | /* s_dmap_2 - base64 ordering for digits */ | |
| 112 | static const char *s_dmap_2 = | |
| 113 | "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; | |
| 114 | #endif | |
| 115 | ||
| 116 | /* }}} */ | |
| 117 | ||
| 118 | /* {{{ Static function declarations */ | |
| 119 | ||
| 120 | /* | |
| 121 | If MP_MACRO is false, these will be defined as actual functions; | |
| 122 | otherwise, suitable macro definitions will be used. This works | |
| 123 | around the fact that ANSI C89 doesn't support an 'inline' keyword | |
| 124 | (although I hear C9x will ... about bloody time). At present, the | |
| 125 | macro definitions are identical to the function bodies, but they'll | |
| 126 | expand in place, instead of generating a function call. | |
| 127 | ||
| 128 | I chose these particular functions to be made into macros because | |
| 129 | some profiling showed they are called a lot on a typical workload, | |
| 130 | and yet they are primarily housekeeping. | |
| 131 | */ | |
| 132 | #if MP_MACRO == 0 | |
| 133 | void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */ | |
| 134 | void s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count); /* copy */ | |
| 135 | void *s_mp_alloc(size_t nb, size_t ni); /* general allocator */ | |
| 136 | void s_mp_free(void *ptr); /* general free function */ | |
| 137 | #else | |
| 138 | ||
| 139 | /* Even if these are defined as macros, we need to respect the settings | |
| 140 | of the MP_MEMSET and MP_MEMCPY configuration options... | |
| 141 | */ | |
| 142 | #if MP_MEMSET == 0 | |
| 143 | #define s_mp_setz(dp, count) \ | |
| 144 | {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;} | |
| 145 | #else | |
| 146 | #define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit)) | |
| 147 | #endif /* MP_MEMSET */ | |
| 148 | ||
| 149 | #if MP_MEMCPY == 0 | |
| 150 | #define s_mp_copy(sp, dp, count) \ | |
| 151 | {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];} | |
| 152 | #else | |
| 153 | #define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit)) | |
| 154 | #endif /* MP_MEMCPY */ | |
| 155 | ||
| 156 | #define s_mp_alloc(nb, ni) calloc(nb, ni) | |
| 157 | #define s_mp_free(ptr) {if(ptr) free(ptr);} | |
| 158 | #endif /* MP_MACRO */ | |
| 159 | ||
| 160 | mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */ | |
| 161 | mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */ | |
| 162 | ||
| 163 | void s_mp_clamp(mp_int *mp); /* clip leading zeroes */ | |
| 164 | ||
| 165 | void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */ | |
| 166 | ||
| 167 | mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */ | |
| 168 | void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */ | |
| 169 | void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */ | |
| 170 | void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */ | |
| 171 | mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place*/ | |
| 172 | void s_mp_div_2(mp_int *mp); /* divide by 2 in place */ | |
| 173 | mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */ | |
| 174 | mp_digit s_mp_norm(mp_int *a, mp_int *b); /* normalize for division */ | |
| 175 | mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */ | |
| 176 | mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */ | |
| 177 | mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */ | |
| 178 | mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r); | |
| 179 | /* unsigned digit divide */ | |
| 180 | mp_err s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu); | |
| 181 | /* Barrett reduction */ | |
| 182 | mp_err s_mp_add(mp_int *a, mp_int *b); /* magnitude addition */ | |
| 183 | mp_err s_mp_sub(mp_int *a, mp_int *b); /* magnitude subtract */ | |
| 184 | mp_err s_mp_mul(mp_int *a, mp_int *b); /* magnitude multiply */ | |
| 185 | #if 0 | |
| 186 | void s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len); | |
| 187 | /* multiply buffers in place */ | |
| 188 | #endif | |
| 189 | #if MP_SQUARE | |
| 190 | mp_err s_mp_sqr(mp_int *a); /* magnitude square */ | |
| 191 | #else | |
| 192 | #define s_mp_sqr(a) s_mp_mul(a, a) | |
| 193 | #endif | |
| 194 | mp_err s_mp_div(mp_int *a, mp_int *b); /* magnitude divide */ | |
| 195 | mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */ | |
| 196 | int s_mp_cmp(mp_int *a, mp_int *b); /* magnitude comparison */ | |
| 197 | int s_mp_cmp_d(mp_int *a, mp_digit d); /* magnitude digit compare */ | |
| 198 | int s_mp_ispow2(mp_int *v); /* is v a power of 2? */ | |
| 199 | int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */ | |
| 200 | ||
| 201 | int s_mp_tovalue(char ch, int r); /* convert ch to value */ | |
| 202 | char s_mp_todigit(int val, int r, int low); /* convert val to digit */ | |
| 203 | int s_mp_outlen(int bits, int r); /* output length in bytes */ | |
| 204 | ||
| 205 | /* }}} */ | |
| 206 | ||
| 207 | /* {{{ Default precision manipulation */ | |
| 208 | ||
| 209 | unsigned int mp_get_prec(void) | |
| 210 | { | |
| 211 | return s_mp_defprec; | |
| 212 | ||
| 213 | } /* end mp_get_prec() */ | |
| 214 | ||
| 215 | void mp_set_prec(unsigned int prec) | |
| 216 | { | |
| 217 | if(prec == 0) | |
| 218 | s_mp_defprec = MP_DEFPREC; | |
| 219 | else | |
| 220 | s_mp_defprec = prec; | |
| 221 | ||
| 222 | } /* end mp_set_prec() */ | |
| 223 | ||
| 224 | /* }}} */ | |
| 225 | ||
| 226 | /*------------------------------------------------------------------------*/ | |
| 227 | /* {{{ mp_init(mp) */ | |
| 228 | ||
| 229 | /* | |
| 230 | mp_init(mp) | |
| 231 | ||
| 232 | Initialize a new zero-valued mp_int. Returns MP_OKAY if successful, | |
| 233 | MP_MEM if memory could not be allocated for the structure. | |
| 234 | */ | |
| 235 | ||
| 236 | mp_err mp_init(mp_int *mp) | |
| 237 | { | |
| 238 | return mp_init_size(mp, s_mp_defprec); | |
| 239 | ||
| 240 | } /* end mp_init() */ | |
| 241 | ||
| 242 | /* }}} */ | |
| 243 | ||
| 244 | /* {{{ mp_init_array(mp[], count) */ | |
| 245 | ||
| 246 | mp_err mp_init_array(mp_int mp[], int count) | |
| 247 | { | |
| 248 | mp_err res; | |
| 249 | int pos; | |
| 250 | ||
| 251 | ARGCHK(mp !=NULL && count > 0, MP_BADARG); | |
| 252 | ||
| 253 | for(pos = 0; pos < count; ++pos) { | |
| 254 | if((res = mp_init(&mp[pos])) != MP_OKAY) | |
| 255 | goto CLEANUP; | |
| 256 | } | |
| 257 | ||
| 258 | return MP_OKAY; | |
| 259 | ||
| 260 | CLEANUP: | |
| 261 | while(--pos >= 0) | |
| 262 | mp_clear(&mp[pos]); | |
| 263 | ||
| 264 | return res; | |
| 265 | ||
| 266 | } /* end mp_init_array() */ | |
| 267 | ||
| 268 | /* }}} */ | |
| 269 | ||
| 270 | /* {{{ mp_init_size(mp, prec) */ | |
| 271 | ||
| 272 | /* | |
| 273 | mp_init_size(mp, prec) | |
| 274 | ||
| 275 | Initialize a new zero-valued mp_int with at least the given | |
| 276 | precision; returns MP_OKAY if successful, or MP_MEM if memory could | |
| 277 | not be allocated for the structure. | |
| 278 | */ | |
| 279 | ||
| 280 | mp_err mp_init_size(mp_int *mp, mp_size prec) | |
| 281 | { | |
| 282 | ARGCHK(mp != NULL && prec > 0, MP_BADARG); | |
| 283 | ||
| 284 | if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit))) == NULL) | |
| 285 | return MP_MEM; | |
| 286 | ||
| 287 | SIGN(mp) = MP_ZPOS; | |
| 288 | USED(mp) = 1; | |
| 289 | ALLOC(mp) = prec; | |
| 290 | ||
| 291 | return MP_OKAY; | |
| 292 | ||
| 293 | } /* end mp_init_size() */ | |
| 294 | ||
| 295 | /* }}} */ | |
| 296 | ||
| 297 | /* {{{ mp_init_copy(mp, from) */ | |
| 298 | ||
| 299 | /* | |
| 300 | mp_init_copy(mp, from) | |
| 301 | ||
| 302 | Initialize mp as an exact copy of from. Returns MP_OKAY if | |
| 303 | successful, MP_MEM if memory could not be allocated for the new | |
| 304 | structure. | |
| 305 | */ | |
| 306 | ||
| 307 | mp_err mp_init_copy(mp_int *mp, mp_int *from) | |
| 308 | { | |
| 309 | ARGCHK(mp != NULL && from != NULL, MP_BADARG); | |
| 310 | ||
| 311 | if(mp == from) | |
| 312 | return MP_OKAY; | |
| 313 | ||
| 314 | if((DIGITS(mp) = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL) | |
| 315 | return MP_MEM; | |
| 316 | ||
| 317 | s_mp_copy(DIGITS(from), DIGITS(mp), USED(from)); | |
| 318 | USED(mp) = USED(from); | |
| 319 | ALLOC(mp) = USED(from); | |
| 320 | SIGN(mp) = SIGN(from); | |
| 321 | ||
| 322 | return MP_OKAY; | |
| 323 | ||
| 324 | } /* end mp_init_copy() */ | |
| 325 | ||
| 326 | /* }}} */ | |
| 327 | ||
| 328 | /* {{{ mp_copy(from, to) */ | |
| 329 | ||
| 330 | /* | |
| 331 | mp_copy(from, to) | |
| 332 | ||
| 333 | Copies the mp_int 'from' to the mp_int 'to'. It is presumed that | |
| 334 | 'to' has already been initialized (if not, use mp_init_copy() | |
| 335 | instead). If 'from' and 'to' are identical, nothing happens. | |
| 336 | */ | |
| 337 | ||
| 338 | mp_err mp_copy(mp_int *from, mp_int *to) | |
| 339 | { | |
| 340 | ARGCHK(from != NULL && to != NULL, MP_BADARG); | |
| 341 | ||
| 342 | if(from == to) | |
| 343 | return MP_OKAY; | |
| 344 | ||
| 345 | { /* copy */ | |
| 346 | mp_digit *tmp; | |
| 347 | ||
| 348 | /* | |
| 349 | If the allocated buffer in 'to' already has enough space to hold | |
| 350 | all the used digits of 'from', we'll re-use it to avoid hitting | |
| 351 | the memory allocater more than necessary; otherwise, we'd have | |
| 352 | to grow anyway, so we just allocate a hunk and make the copy as | |
| 353 | usual | |
| 354 | */ | |
| 355 | if(ALLOC(to) >= USED(from)) { | |
| 356 | s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from)); | |
| 357 | s_mp_copy(DIGITS(from), DIGITS(to), USED(from)); | |
| 358 | ||
| 359 | } else { | |
| 360 | if((tmp = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL) | |
| 361 | return MP_MEM; | |
| 362 | ||
| 363 | s_mp_copy(DIGITS(from), tmp, USED(from)); | |
| 364 | ||
| 365 | if(DIGITS(to) != NULL) { | |
| 366 | #if MP_CRYPTO | |
| 367 | s_mp_setz(DIGITS(to), ALLOC(to)); | |
| 368 | #endif | |
| 369 | s_mp_free(DIGITS(to)); | |
| 370 | } | |
| 371 | ||
| 372 | DIGITS(to) = tmp; | |
| 373 | ALLOC(to) = USED(from); | |
| 374 | } | |
| 375 | ||
| 376 | /* Copy the precision and sign from the original */ | |
| 377 | USED(to) = USED(from); | |
| 378 | SIGN(to) = SIGN(from); | |
| 379 | } /* end copy */ | |
| 380 | ||
| 381 | return MP_OKAY; | |
| 382 | ||
| 383 | } /* end mp_copy() */ | |
| 384 | ||
| 385 | /* }}} */ | |
| 386 | ||
| 387 | /* {{{ mp_exch(mp1, mp2) */ | |
| 388 | ||
| 389 | /* | |
| 390 | mp_exch(mp1, mp2) | |
| 391 | ||
| 392 | Exchange mp1 and mp2 without allocating any intermediate memory | |
| 393 | (well, unless you count the stack space needed for this call and the | |
| 394 | locals it creates...). This cannot fail. | |
| 395 | */ | |
| 396 | ||
| 397 | void mp_exch(mp_int *mp1, mp_int *mp2) | |
| 398 | { | |
| 399 | #if MP_ARGCHK == 2 | |
| 400 | assert(mp1 != NULL && mp2 != NULL); | |
| 401 | #else | |
| 402 | if(mp1 == NULL || mp2 == NULL) | |
| 403 | return; | |
| 404 | #endif | |
| 405 | ||
| 406 | s_mp_exch(mp1, mp2); | |
| 407 | ||
| 408 | } /* end mp_exch() */ | |
| 409 | ||
| 410 | /* }}} */ | |
| 411 | ||
| 412 | /* {{{ mp_clear(mp) */ | |
| 413 | ||
| 414 | /* | |
| 415 | mp_clear(mp) | |
| 416 | ||
| 417 | Release the storage used by an mp_int, and void its fields so that | |
| 418 | if someone calls mp_clear() again for the same int later, we won't | |
| 419 | get tollchocked. | |
| 420 | */ | |
| 421 | ||
| 422 | void mp_clear(mp_int *mp) | |
| 423 | { | |
| 424 | if(mp == NULL) | |
| 425 | return; | |
| 426 | ||
| 427 | if(DIGITS(mp) != NULL) { | |
| 428 | #if MP_CRYPTO | |
| 429 | s_mp_setz(DIGITS(mp), ALLOC(mp)); | |
| 430 | #endif | |
| 431 | s_mp_free(DIGITS(mp)); | |
| 432 | DIGITS(mp) = NULL; | |
| 433 | } | |
| 434 | ||
| 435 | USED(mp) = 0; | |
| 436 | ALLOC(mp) = 0; | |
| 437 | ||
| 438 | } /* end mp_clear() */ | |
| 439 | ||
| 440 | /* }}} */ | |
| 441 | ||
| 442 | /* {{{ mp_clear_array(mp[], count) */ | |
| 443 | ||
| 444 | void mp_clear_array(mp_int mp[], int count) | |
| 445 | { | |
| 446 | ARGCHK(mp != NULL && count > 0, MP_BADARG); | |
| 447 | ||
| 448 | while(--count >= 0) | |
| 449 | mp_clear(&mp[count]); | |
| 450 | ||
| 451 | } /* end mp_clear_array() */ | |
| 452 | ||
| 453 | /* }}} */ | |
| 454 | ||
| 455 | /* {{{ mp_zero(mp) */ | |
| 456 | ||
| 457 | /* | |
| 458 | mp_zero(mp) | |
| 459 | ||
| 460 | Set mp to zero. Does not change the allocated size of the structure, | |
| 461 | and therefore cannot fail (except on a bad argument, which we ignore) | |
| 462 | */ | |
| 463 | void mp_zero(mp_int *mp) | |
| 464 | { | |
| 465 | if(mp == NULL) | |
| 466 | return; | |
| 467 | ||
| 468 | s_mp_setz(DIGITS(mp), ALLOC(mp)); | |
| 469 | USED(mp) = 1; | |
| 470 | SIGN(mp) = MP_ZPOS; | |
| 471 | ||
| 472 | } /* end mp_zero() */ | |
| 473 | ||
| 474 | /* }}} */ | |
| 475 | ||
| 476 | /* {{{ mp_set(mp, d) */ | |
| 477 | ||
| 478 | void mp_set(mp_int *mp, mp_digit d) | |
| 479 | { | |
| 480 | if(mp == NULL) | |
| 481 | return; | |
| 482 | ||
| 483 | mp_zero(mp); | |
| 484 | DIGIT(mp, 0) = d; | |
| 485 | ||
| 486 | } /* end mp_set() */ | |
| 487 | ||
| 488 | /* }}} */ | |
| 489 | ||
| 490 | /* {{{ mp_set_int(mp, z) */ | |
| 491 | ||
| 492 | mp_err mp_set_int(mp_int *mp, long z) | |
| 493 | { | |
| 494 | int ix; | |
| 495 | unsigned long v = abs(z); | |
| 496 | mp_err res; | |
| 497 | ||
| 498 | ARGCHK(mp != NULL, MP_BADARG); | |
| 499 | ||
| 500 | mp_zero(mp); | |
| 501 | if(z == 0) | |
| 502 | return MP_OKAY; /* shortcut for zero */ | |
| 503 | ||
| 504 | for(ix = sizeof(long) - 1; ix >= 0; ix--) { | |
| 505 | ||
| 506 | if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY) | |
| 507 | return res; | |
| 508 | ||
| 509 | res = s_mp_add_d(mp, | |
| 510 | (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX)); | |
| 511 | if(res != MP_OKAY) | |
| 512 | return res; | |
| 513 | ||
| 514 | } | |
| 515 | ||
| 516 | if(z < 0) | |
| 517 | SIGN(mp) = MP_NEG; | |
| 518 | ||
| 519 | return MP_OKAY; | |
| 520 | ||
| 521 | } /* end mp_set_int() */ | |
| 522 | ||
| 523 | /* }}} */ | |
| 524 | ||
| 525 | /*------------------------------------------------------------------------*/ | |
| 526 | /* {{{ Digit arithmetic */ | |
| 527 | ||
| 528 | /* {{{ mp_add_d(a, d, b) */ | |
| 529 | ||
| 530 | /* | |
| 531 | mp_add_d(a, d, b) | |
| 532 | ||
| 533 | Compute the sum b = a + d, for a single digit d. Respects the sign of | |
| 534 | its primary addend (single digits are unsigned anyway). | |
| 535 | */ | |
| 536 | ||
| 537 | mp_err mp_add_d(mp_int *a, mp_digit d, mp_int *b) | |
| 538 | { | |
| 539 | mp_err res = MP_OKAY; | |
| 540 | ||
| 541 | ARGCHK(a != NULL && b != NULL, MP_BADARG); | |
| 542 | ||
| 543 | if((res = mp_copy(a, b)) != MP_OKAY) | |
| 544 | return res; | |
| 545 | ||
| 546 | if(SIGN(b) == MP_ZPOS) { | |
| 547 | res = s_mp_add_d(b, d); | |
| 548 | } else if(s_mp_cmp_d(b, d) >= 0) { | |
| 549 | res = s_mp_sub_d(b, d); | |
| 550 | } else { | |
| 551 | SIGN(b) = MP_ZPOS; | |
| 552 | ||
| 553 | DIGIT(b, 0) = d - DIGIT(b, 0); | |
| 554 | } | |
| 555 | ||
| 556 | return res; | |
| 557 | ||
| 558 | } /* end mp_add_d() */ | |
| 559 | ||
| 560 | /* }}} */ | |
| 561 | ||
| 562 | /* {{{ mp_sub_d(a, d, b) */ | |
| 563 | ||
| 564 | /* | |
| 565 | mp_sub_d(a, d, b) | |
| 566 | ||
| 567 | Compute the difference b = a - d, for a single digit d. Respects the | |
| 568 | sign of its subtrahend (single digits are unsigned anyway). | |
| 569 | */ | |
| 570 | ||
| 571 | mp_err mp_sub_d(mp_int *a, mp_digit d, mp_int *b) | |
| 572 | { | |
| 573 | mp_err res; | |
| 574 | ||
| 575 | ARGCHK(a != NULL && b != NULL, MP_BADARG); | |
| 576 | ||
| 577 | if((res = mp_copy(a, b)) != MP_OKAY) | |
| 578 | return res; | |
| 579 | ||
| 580 | if(SIGN(b) == MP_NEG) { | |
| 581 | if((res = s_mp_add_d(b, d)) != MP_OKAY) | |
| 582 | return res; | |
| 583 | ||
| 584 | } else if(s_mp_cmp_d(b, d) >= 0) { | |
| 585 | if((res = s_mp_sub_d(b, d)) != MP_OKAY) | |
| 586 | return res; | |
| 587 | ||
| 588 | } else { | |
| 589 | mp_neg(b, b); | |
| 590 | ||
| 591 | DIGIT(b, 0) = d - DIGIT(b, 0); | |
| 592 | SIGN(b) = MP_NEG; | |
| 593 | } | |
| 594 | ||
| 595 | if(s_mp_cmp_d(b, 0) == 0) | |
| 596 | SIGN(b) = MP_ZPOS; | |
| 597 | ||
| 598 | return MP_OKAY; | |
| 599 | ||
| 600 | } /* end mp_sub_d() */ | |
| 601 | ||
| 602 | /* }}} */ | |
| 603 | ||
| 604 | /* {{{ mp_mul_d(a, d, b) */ | |
| 605 | ||
| 606 | /* | |
| 607 | mp_mul_d(a, d, b) | |
| 608 | ||
| 609 | Compute the product b = a * d, for a single digit d. Respects the sign | |
| 610 | of its multiplicand (single digits are unsigned anyway) | |
| 611 | */ | |
| 612 | ||
| 613 | mp_err mp_mul_d(mp_int *a, mp_digit d, mp_int *b) | |
| 614 | { | |
| 615 | mp_err res; | |
| 616 | ||
| 617 | ARGCHK(a != NULL && b != NULL, MP_BADARG); | |
| 618 | ||
| 619 | if(d == 0) { | |
| 620 | mp_zero(b); | |
| 621 | return MP_OKAY; | |
| 622 | } | |
| 623 | ||
| 624 | if((res = mp_copy(a, b)) != MP_OKAY) | |
| 625 | return res; | |
| 626 | ||
| 627 | res = s_mp_mul_d(b, d); | |
| 628 | ||
| 629 | return res; | |
| 630 | ||
| 631 | } /* end mp_mul_d() */ | |
| 632 | ||
| 633 | /* }}} */ | |
| 634 | ||
| 635 | /* {{{ mp_mul_2(a, c) */ | |
| 636 | ||
| 637 | mp_err mp_mul_2(mp_int *a, mp_int *c) | |
| 638 | { | |
| 639 | mp_err res; | |
| 640 | ||
| 641 | ARGCHK(a != NULL && c != NULL, MP_BADARG); | |
| 642 | ||
| 643 | if((res = mp_copy(a, c)) != MP_OKAY) | |
| 644 | return res; | |
| 645 | ||
| 646 | return s_mp_mul_2(c); | |
| 647 | ||
| 648 | } /* end mp_mul_2() */ | |
| 649 | ||
| 650 | /* }}} */ | |
| 651 | ||
| 652 | /* {{{ mp_div_d(a, d, q, r) */ | |
| 653 | ||
| 654 | /* | |
| 655 | mp_div_d(a, d, q, r) | |
| 656 | ||
| 657 | Compute the quotient q = a / d and remainder r = a mod d, for a | |
| 658 | single digit d. Respects the sign of its divisor (single digits are | |
| 659 | unsigned anyway). | |
| 660 | */ | |
| 661 | ||
| 662 | mp_err mp_div_d(mp_int *a, mp_digit d, mp_int *q, mp_digit *r) | |
| 663 | { | |
| 664 | mp_err res; | |
| 665 | mp_digit rem; | |
| 666 | int pow; | |
| 667 | ||
| 668 | ARGCHK(a != NULL, MP_BADARG); | |
| 669 | ||
| 670 | if(d == 0) | |
| 671 | return MP_RANGE; | |
| 672 | ||
| 673 | /* Shortcut for powers of two ... */ | |
| 674 | if((pow = s_mp_ispow2d(d)) >= 0) { | |
| 675 | mp_digit mask; | |
| 676 | ||
| 677 | mask = (1 << pow) - 1; | |
| 678 | rem = DIGIT(a, 0) & mask; | |
| 679 | ||
| 680 | if(q) { | |
| 681 | mp_copy(a, q); | |
| 682 | s_mp_div_2d(q, pow); | |
| 683 | } | |
| 684 | ||
| 685 | if(r) | |
| 686 | *r = rem; | |
| 687 | ||
| 688 | return MP_OKAY; | |
| 689 | } | |
| 690 | ||
| 691 | /* | |
| 692 | If the quotient is actually going to be returned, we'll try to | |
| 693 | avoid hitting the memory allocator by copying the dividend into it | |
| 694 | and doing the division there. This can't be any _worse_ than | |
| 695 | always copying, and will sometimes be better (since it won't make | |
| 696 | another copy) | |
| 697 | ||
| 698 | If it's not going to be returned, we need to allocate a temporary | |
| 699 | to hold the quotient, which will just be discarded. | |
| 700 | */ | |
| 701 | if(q) { | |
| 702 | if((res = mp_copy(a, q)) != MP_OKAY) | |
| 703 | return res; | |
| 704 | ||
| 705 | res = s_mp_div_d(q, d, &rem); | |
| 706 | if(s_mp_cmp_d(q, 0) == MP_EQ) | |
| 707 | SIGN(q) = MP_ZPOS; | |
| 708 | ||
| 709 | } else { | |
| 710 | mp_int qp; | |
| 711 | ||
| 712 | if((res = mp_init_copy(&qp, a)) != MP_OKAY) | |
| 713 | return res; | |
| 714 | ||
| 715 | res = s_mp_div_d(&qp, d, &rem); | |
| 716 | if(s_mp_cmp_d(&qp, 0) == 0) | |
| 717 | SIGN(&qp) = MP_ZPOS; | |
| 718 | ||
| 719 | mp_clear(&qp); | |
| 720 | } | |
| 721 | ||
| 722 | if(r) | |
| 723 | *r = rem; | |
| 724 | ||
| 725 | return res; | |
| 726 | ||
| 727 | } /* end mp_div_d() */ | |
| 728 | ||
| 729 | /* }}} */ | |
| 730 | ||
| 731 | /* {{{ mp_div_2(a, c) */ | |
| 732 | ||
| 733 | /* | |
| 734 | mp_div_2(a, c) | |
| 735 | ||
| 736 | Compute c = a / 2, disregarding the remainder. | |
| 737 | */ | |
| 738 | ||
| 739 | mp_err mp_div_2(mp_int *a, mp_int *c) | |
| 740 | { | |
| 741 | mp_err res; | |
| 742 | ||
| 743 | ARGCHK(a != NULL && c != NULL, MP_BADARG); | |
| 744 | ||
| 745 | if((res = mp_copy(a, c)) != MP_OKAY) | |
| 746 | return res; | |
| 747 | ||
| 748 | s_mp_div_2(c); | |
| 749 | ||
| 750 | return MP_OKAY; | |
| 751 | ||
| 752 | } /* end mp_div_2() */ | |
| 753 | ||
| 754 | /* }}} */ | |
| 755 | ||
| 756 | /* {{{ mp_expt_d(a, d, b) */ | |
| 757 | ||
| 758 | mp_err mp_expt_d(mp_int *a, mp_digit d, mp_int *c) | |
| 759 | { | |
| 760 | mp_int s, x; | |
| 761 | mp_err res; | |
| 762 | mp_sign cs = MP_ZPOS; | |
| 763 | ||
| 764 | ARGCHK(a != NULL && c != NULL, MP_BADARG); | |
| 765 | ||
| 766 | if((res = mp_init(&s)) != MP_OKAY) | |
| 767 | return res; | |
| 768 | if((res = mp_init_copy(&x, a)) != MP_OKAY) | |
| 769 | goto X; | |
| 770 | ||
| 771 | DIGIT(&s, 0) = 1; | |
| 772 | ||
| 773 | if((d % 2) == 1) | |
| 774 | cs = SIGN(a); | |
| 775 | ||
| 776 | while(d != 0) { | |
| 777 | if(d & 1) { | |
| 778 | if((res = s_mp_mul(&s, &x)) != MP_OKAY) | |
| 779 | goto CLEANUP; | |
| 780 | } | |
| 781 | ||
| 782 | d >>= 1; | |
| 783 | ||
| 784 | if((res = s_mp_sqr(&x)) != MP_OKAY) | |
| 785 | goto CLEANUP; | |
| 786 | } | |
| 787 | ||
| 788 | SIGN(&s) = cs; | |
| 789 | ||
| 790 | s_mp_exch(&s, c); | |
| 791 | ||
| 792 | CLEANUP: | |
| 793 | mp_clear(&x); | |
| 794 | X: | |
| 795 | mp_clear(&s); | |
| 796 | ||
| 797 | return res; | |
| 798 | ||
| 799 | } /* end mp_expt_d() */ | |
| 800 | ||
| 801 | /* }}} */ | |
| 802 | ||
| 803 | /* }}} */ | |
| 804 | ||
| 805 | /*------------------------------------------------------------------------*/ | |
| 806 | /* {{{ Full arithmetic */ | |
| 807 | ||
| 808 | /* {{{ mp_abs(a, b) */ | |
| 809 | ||
| 810 | /* | |
| 811 | mp_abs(a, b) | |
| 812 | ||
| 813 | Compute b = |a|. 'a' and 'b' may be identical. | |
| 814 | */ | |
| 815 | ||
| 816 | mp_err mp_abs(mp_int *a, mp_int *b) | |
| 817 | { | |
| 818 | mp_err res; | |
| 819 | ||
| 820 | ARGCHK(a != NULL && b != NULL, MP_BADARG); | |
| 821 | ||
| 822 | if((res = mp_copy(a, b)) != MP_OKAY) | |
| 823 | return res; | |
| 824 | ||
| 825 | SIGN(b) = MP_ZPOS; | |
| 826 | ||
| 827 | return MP_OKAY; | |
| 828 | ||
| 829 | } /* end mp_abs() */ | |
| 830 | ||
| 831 | /* }}} */ | |
| 832 | ||
| 833 | /* {{{ mp_neg(a, b) */ | |
| 834 | ||
| 835 | /* | |
| 836 | mp_neg(a, b) | |
| 837 | ||
| 838 | Compute b = -a. 'a' and 'b' may be identical. | |
| 839 | */ | |
| 840 | ||
| 841 | mp_err mp_neg(mp_int *a, mp_int *b) | |
| 842 | { | |
| 843 | mp_err res; | |
| 844 | ||
| 845 | ARGCHK(a != NULL && b != NULL, MP_BADARG); | |
| 846 | ||
| 847 | if((res = mp_copy(a, b)) != MP_OKAY) | |
| 848 | return res; | |
| 849 | ||
| 850 | if(s_mp_cmp_d(b, 0) == MP_EQ) | |
| 851 | SIGN(b) = MP_ZPOS; | |
| 852 | else | |
| 853 | SIGN(b) = (SIGN(b) == MP_NEG) ? MP_ZPOS : MP_NEG; | |
| 854 | ||
| 855 | return MP_OKAY; | |
| 856 | ||
| 857 | } /* end mp_neg() */ | |
| 858 | ||
| 859 | /* }}} */ | |
| 860 | ||
| 861 | /* {{{ mp_add(a, b, c) */ | |
| 862 | ||
| 863 | /* | |
| 864 | mp_add(a, b, c) | |
| 865 | ||
| 866 | Compute c = a + b. All parameters may be identical. | |
| 867 | */ | |
| 868 | ||
| 869 | mp_err mp_add(mp_int *a, mp_int *b, mp_int *c) | |
| 870 | { | |
| 871 | mp_err res; | |
| 872 | int cmp; | |
| 873 | ||
| 874 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); | |
| 875 | ||
| 876 | if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */ | |
| 877 | ||
| 878 | /* Commutativity of addition lets us do this in either order, | |
| 879 | so we avoid having to use a temporary even if the result | |
| 880 | is supposed to replace the output | |
| 881 | */ | |
| 882 | if(c == b) { | |
| 883 | if((res = s_mp_add(c, a)) != MP_OKAY) | |
| 884 | return res; | |
| 885 | } else { | |
| 886 | if(c != a && (res = mp_copy(a, c)) != MP_OKAY) | |
| 887 | return res; | |
| 888 | ||
| 889 | if((res = s_mp_add(c, b)) != MP_OKAY) | |
| 890 | return res; | |
| 891 | } | |
| 892 | ||
| 893 | } else if((cmp = s_mp_cmp(a, b)) > 0) { /* different sign: a > b */ | |
| 894 | ||
| 895 | /* If the output is going to be clobbered, we will use a temporary | |
| 896 | variable; otherwise, we'll do it without touching the memory | |
| 897 | allocator at all, if possible | |
| 898 | */ | |
| 899 | if(c == b) { | |
| 900 | mp_int tmp; | |
| 901 | ||
| 902 | if((res = mp_init_copy(&tmp, a)) != MP_OKAY) | |
| 903 | return res; | |
| 904 | if((res = s_mp_sub(&tmp, b)) != MP_OKAY) { | |
| 905 | mp_clear(&tmp); | |
| 906 | return res; | |
| 907 | } | |
| 908 | ||
| 909 | s_mp_exch(&tmp, c); | |
| 910 | mp_clear(&tmp); | |
| 911 | ||
| 912 | } else { | |
| 913 | ||
| 914 | if(c != a && (res = mp_copy(a, c)) != MP_OKAY) | |
| 915 | return res; | |
| 916 | if((res = s_mp_sub(c, b)) != MP_OKAY) | |
| 917 | return res; | |
| 918 | ||
| 919 | } | |
| 920 | ||
| 921 | } else if(cmp == 0) { /* different sign, a == b */ | |
| 922 | ||
| 923 | mp_zero(c); | |
| 924 | return MP_OKAY; | |
| 925 | ||
| 926 | } else { /* different sign: a < b */ | |
| 927 | ||
| 928 | /* See above... */ | |
| 929 | if(c == a) { | |
| 930 | mp_int tmp; | |
| 931 | ||
| 932 | if((res = mp_init_copy(&tmp, b)) != MP_OKAY) | |
| 933 | return res; | |
| 934 | if((res = s_mp_sub(&tmp, a)) != MP_OKAY) { | |
| 935 | mp_clear(&tmp); | |
| 936 | return res; | |
| 937 | } | |
| 938 | ||
| 939 | s_mp_exch(&tmp, c); | |
| 940 | mp_clear(&tmp); | |
| 941 | ||
| 942 | } else { | |
| 943 | ||
| 944 | if(c != b && (res = mp_copy(b, c)) != MP_OKAY) | |
| 945 | return res; | |
| 946 | if((res = s_mp_sub(c, a)) != MP_OKAY) | |
| 947 | return res; | |
| 948 | ||
| 949 | } | |
| 950 | } | |
| 951 | ||
| 952 | if(USED(c) == 1 && DIGIT(c, 0) == 0) | |
| 953 | SIGN(c) = MP_ZPOS; | |
| 954 | ||
| 955 | return MP_OKAY; | |
| 956 | ||
| 957 | } /* end mp_add() */ | |
| 958 | ||
| 959 | /* }}} */ | |
| 960 | ||
| 961 | /* {{{ mp_sub(a, b, c) */ | |
| 962 | ||
| 963 | /* | |
| 964 | mp_sub(a, b, c) | |
| 965 | ||
| 966 | Compute c = a - b. All parameters may be identical. | |
| 967 | */ | |
| 968 | ||
| 969 | mp_err mp_sub(mp_int *a, mp_int *b, mp_int *c) | |
| 970 | { | |
| 971 | mp_err res; | |
| 972 | int cmp; | |
| 973 | ||
| 974 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); | |
| 975 | ||
| 976 | if(SIGN(a) != SIGN(b)) { | |
| 977 | if(c == a) { | |
| 978 | if((res = s_mp_add(c, b)) != MP_OKAY) | |
| 979 | return res; | |
| 980 | } else { | |
| 981 | if(c != b && ((res = mp_copy(b, c)) != MP_OKAY)) | |
| 982 | return res; | |
| 983 | if((res = s_mp_add(c, a)) != MP_OKAY) | |
| 984 | return res; | |
| 985 | SIGN(c) = SIGN(a); | |
| 986 | } | |
| 987 | ||
| 988 | } else if((cmp = s_mp_cmp(a, b)) > 0) { /* Same sign, a > b */ | |
| 989 | if(c == b) { | |
| 990 | mp_int tmp; | |
| 991 | ||
| 992 | if((res = mp_init_copy(&tmp, a)) != MP_OKAY) | |
| 993 | return res; | |
| 994 | if((res = s_mp_sub(&tmp, b)) != MP_OKAY) { | |
| 995 | mp_clear(&tmp); | |
| 996 | return res; | |
| 997 | } | |
| 998 | s_mp_exch(&tmp, c); | |
| 999 | mp_clear(&tmp); | |
| 1000 | ||
| 1001 | } else { | |
| 1002 | if(c != a && ((res = mp_copy(a, c)) != MP_OKAY)) | |
| 1003 | return res; | |
| 1004 | ||
| 1005 | if((res = s_mp_sub(c, b)) != MP_OKAY) | |
| 1006 | return res; | |
| 1007 | } | |
| 1008 | ||
| 1009 | } else if(cmp == 0) { /* Same sign, equal magnitude */ | |
| 1010 | mp_zero(c); | |
| 1011 | return MP_OKAY; | |
| 1012 | ||
| 1013 | } else { /* Same sign, b > a */ | |
| 1014 | if(c == a) { | |
| 1015 | mp_int tmp; | |
| 1016 | ||
| 1017 | if((res = mp_init_copy(&tmp, b)) != MP_OKAY) | |
| 1018 | return res; | |
| 1019 | ||
| 1020 | if((res = s_mp_sub(&tmp, a)) != MP_OKAY) { | |
| 1021 | mp_clear(&tmp); | |
| 1022 | return res; | |
| 1023 | } | |
| 1024 | s_mp_exch(&tmp, c); | |
| 1025 | mp_clear(&tmp); | |
| 1026 | ||
| 1027 | } else { | |
| 1028 | if(c != b && ((res = mp_copy(b, c)) != MP_OKAY)) | |
| 1029 | return res; | |
| 1030 | ||
| 1031 | if((res = s_mp_sub(c, a)) != MP_OKAY) | |
| 1032 | return res; | |
| 1033 | } | |
| 1034 | ||
| 1035 | SIGN(c) = !SIGN(b); | |
| 1036 | } | |
| 1037 | ||
| 1038 | if(USED(c) == 1 && DIGIT(c, 0) == 0) | |
| 1039 | SIGN(c) = MP_ZPOS; | |
| 1040 | ||
| 1041 | return MP_OKAY; | |
| 1042 | ||
| 1043 | } /* end mp_sub() */ | |
| 1044 | ||
| 1045 | /* }}} */ | |
| 1046 | ||
| 1047 | /* {{{ mp_mul(a, b, c) */ | |
| 1048 | ||
| 1049 | /* | |
| 1050 | mp_mul(a, b, c) | |
| 1051 | ||
| 1052 | Compute c = a * b. All parameters may be identical. | |
| 1053 | */ | |
| 1054 | ||
| 1055 | mp_err mp_mul(mp_int *a, mp_int *b, mp_int *c) | |
| 1056 | { | |
| 1057 | mp_err res; | |
| 1058 | mp_sign sgn; | |
| 1059 | ||
| 1060 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); | |
| 1061 | ||
| 1062 | sgn = (SIGN(a) == SIGN(b)) ? MP_ZPOS : MP_NEG; | |
| 1063 | ||
| 1064 | if(c == b) { | |
| 1065 | if((res = s_mp_mul(c, a)) != MP_OKAY) | |
| 1066 | return res; | |
| 1067 | ||
| 1068 | } else { | |
| 1069 | if((res = mp_copy(a, c)) != MP_OKAY) | |
| 1070 | return res; | |
| 1071 | ||
| 1072 | if((res = s_mp_mul(c, b)) != MP_OKAY) | |
| 1073 | return res; | |
| 1074 | } | |
| 1075 | ||
| 1076 | if(sgn == MP_ZPOS || s_mp_cmp_d(c, 0) == MP_EQ) | |
| 1077 | SIGN(c) = MP_ZPOS; | |
| 1078 | else | |
| 1079 | SIGN(c) = sgn; | |
| 1080 | ||
| 1081 | return MP_OKAY; | |
| 1082 | ||
| 1083 | } /* end mp_mul() */ | |
| 1084 | ||
| 1085 | /* }}} */ | |
| 1086 | ||
| 1087 | /* {{{ mp_mul_2d(a, d, c) */ | |
| 1088 | ||
| 1089 | /* | |
| 1090 | mp_mul_2d(a, d, c) | |
| 1091 | ||
| 1092 | Compute c = a * 2^d. a may be the same as c. | |
| 1093 | */ | |
| 1094 | ||
| 1095 | mp_err mp_mul_2d(mp_int *a, mp_digit d, mp_int *c) | |
| 1096 | { | |
| 1097 | mp_err res; | |
| 1098 | ||
| 1099 | ARGCHK(a != NULL && c != NULL, MP_BADARG); | |
| 1100 | ||
| 1101 | if((res = mp_copy(a, c)) != MP_OKAY) | |
| 1102 | return res; | |
| 1103 | ||
| 1104 | if(d == 0) | |
| 1105 | return MP_OKAY; | |
| 1106 | ||
| 1107 | return s_mp_mul_2d(c, d); | |
| 1108 | ||
| 1109 | } /* end mp_mul() */ | |
| 1110 | ||
| 1111 | /* }}} */ | |
| 1112 | ||
| 1113 | /* {{{ mp_sqr(a, b) */ | |
| 1114 | ||
| 1115 | #if MP_SQUARE | |
| 1116 | mp_err mp_sqr(mp_int *a, mp_int *b) | |
| 1117 | { | |
| 1118 | mp_err res; | |
| 1119 | ||
| 1120 | ARGCHK(a != NULL && b != NULL, MP_BADARG); | |
| 1121 | ||
| 1122 | if((res = mp_copy(a, b)) != MP_OKAY) | |
| 1123 | return res; | |
| 1124 | ||
| 1125 | if((res = s_mp_sqr(b)) != MP_OKAY) | |
| 1126 | return res; | |
| 1127 | ||
| 1128 | SIGN(b) = MP_ZPOS; | |
| 1129 | ||
| 1130 | return MP_OKAY; | |
| 1131 | ||
| 1132 | } /* end mp_sqr() */ | |
| 1133 | #endif | |
| 1134 | ||
| 1135 | /* }}} */ | |
| 1136 | ||
| 1137 | /* {{{ mp_div(a, b, q, r) */ | |
| 1138 | ||
| 1139 | /* | |
| 1140 | mp_div(a, b, q, r) | |
| 1141 | ||
| 1142 | Compute q = a / b and r = a mod b. Input parameters may be re-used | |
| 1143 | as output parameters. If q or r is NULL, that portion of the | |
| 1144 | computation will be discarded (although it will still be computed) | |
| 1145 | ||
| 1146 | Pay no attention to the hacker behind the curtain. | |
| 1147 | */ | |
| 1148 | ||
| 1149 | mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r) | |
| 1150 | { | |
| 1151 | mp_err res; | |
| 1152 | mp_int qtmp, rtmp; | |
| 1153 | int cmp; | |
| 1154 | ||
| 1155 | ARGCHK(a != NULL && b != NULL, MP_BADARG); | |
| 1156 | ||
| 1157 | if(mp_cmp_z(b) == MP_EQ) | |
| 1158 | return MP_RANGE; | |
| 1159 | ||
| 1160 | /* If a <= b, we can compute the solution without division, and | |
| 1161 | avoid any memory allocation | |
| 1162 | */ | |
| 1163 | if((cmp = s_mp_cmp(a, b)) < 0) { | |
| 1164 | if(r) { | |
| 1165 | if((res = mp_copy(a, r)) != MP_OKAY) | |
| 1166 | return res; | |
| 1167 | } | |
| 1168 | ||
| 1169 | if(q) | |
| 1170 | mp_zero(q); | |
| 1171 | ||
| 1172 | return MP_OKAY; | |
| 1173 | ||
| 1174 | } else if(cmp == 0) { | |
| 1175 | ||
| 1176 | /* Set quotient to 1, with appropriate sign */ | |
| 1177 | if(q) { | |
| 1178 | int qneg = (SIGN(a) != SIGN(b)); | |
| 1179 | ||
| 1180 | mp_set(q, 1); | |
| 1181 | if(qneg) | |
| 1182 | SIGN(q) = MP_NEG; | |
| 1183 | } | |
| 1184 | ||
| 1185 | if(r) | |
| 1186 | mp_zero(r); | |
| 1187 | ||
| 1188 | return MP_OKAY; | |
| 1189 | } | |
| 1190 | ||
| 1191 | /* If we get here, it means we actually have to do some division */ | |
| 1192 | ||
| 1193 | /* Set up some temporaries... */ | |
| 1194 | if((res = mp_init_copy(&qtmp, a)) != MP_OKAY) | |
| 1195 | return res; | |
| 1196 | if((res = mp_init_copy(&rtmp, b)) != MP_OKAY) | |
| 1197 | goto CLEANUP; | |
| 1198 | ||
| 1199 | if((res = s_mp_div(&qtmp, &rtmp)) != MP_OKAY) | |
| 1200 | goto CLEANUP; | |
| 1201 | ||
| 1202 | /* Compute the signs for the output */ | |
| 1203 | SIGN(&rtmp) = SIGN(a); /* Sr = Sa */ | |
| 1204 | if(SIGN(a) == SIGN(b)) | |
| 1205 | SIGN(&qtmp) = MP_ZPOS; /* Sq = MP_ZPOS if Sa = Sb */ | |
| 1206 | else | |
| 1207 | SIGN(&qtmp) = MP_NEG; /* Sq = MP_NEG if Sa != Sb */ | |
| 1208 | ||
| 1209 | if(s_mp_cmp_d(&qtmp, 0) == MP_EQ) | |
| 1210 | SIGN(&qtmp) = MP_ZPOS; | |
| 1211 | if(s_mp_cmp_d(&rtmp, 0) == MP_EQ) | |
| 1212 | SIGN(&rtmp) = MP_ZPOS; | |
| 1213 | ||
| 1214 | /* Copy output, if it is needed */ | |
| 1215 | if(q) | |
| 1216 | s_mp_exch(&qtmp, q); | |
| 1217 | ||
| 1218 | if(r) | |
| 1219 | s_mp_exch(&rtmp, r); | |
| 1220 | ||
| 1221 | CLEANUP: | |
| 1222 | mp_clear(&rtmp); | |
| 1223 | mp_clear(&qtmp); | |
| 1224 | ||
| 1225 | return res; | |
| 1226 | ||
| 1227 | } /* end mp_div() */ | |
| 1228 | ||
| 1229 | /* }}} */ | |
| 1230 | ||
| 1231 | /* {{{ mp_div_2d(a, d, q, r) */ | |
| 1232 | ||
| 1233 | mp_err mp_div_2d(mp_int *a, mp_digit d, mp_int *q, mp_int *r) | |
| 1234 | { | |
| 1235 | mp_err res; | |
| 1236 | ||
| 1237 | ARGCHK(a != NULL, MP_BADARG); | |
| 1238 | ||
| 1239 | if(q) { | |
| 1240 | if((res = mp_copy(a, q)) != MP_OKAY) | |
| 1241 | return res; | |
| 1242 | ||
| 1243 | s_mp_div_2d(q, d); | |
| 1244 | } | |
| 1245 | ||
| 1246 | if(r) { | |
| 1247 | if((res = mp_copy(a, r)) != MP_OKAY) | |
| 1248 | return res; | |
| 1249 | ||
| 1250 | s_mp_mod_2d(r, d); | |
| 1251 | } | |
| 1252 | ||
| 1253 | return MP_OKAY; | |
| 1254 | ||
| 1255 | } /* end mp_div_2d() */ | |
| 1256 | ||
| 1257 | /* }}} */ | |
| 1258 | ||
| 1259 | /* {{{ mp_expt(a, b, c) */ | |
| 1260 | ||
| 1261 | /* | |
| 1262 | mp_expt(a, b, c) | |
| 1263 | ||
| 1264 | Compute c = a ** b, that is, raise a to the b power. Uses a | |
| 1265 | standard iterative square-and-multiply technique. | |
| 1266 | */ | |
| 1267 | ||
| 1268 | mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c) | |
| 1269 | { | |
| 1270 | mp_int s, x; | |
| 1271 | mp_err res; | |
| 1272 | mp_digit d; | |
| 1273 | int dig, bit; | |
| 1274 | ||
| 1275 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); | |
| 1276 | ||
| 1277 | if(mp_cmp_z(b) < 0) | |
| 1278 | return MP_RANGE; | |
| 1279 | ||
| 1280 | if((res = mp_init(&s)) != MP_OKAY) | |
| 1281 | return res; | |
| 1282 | ||
| 1283 | mp_set(&s, 1); | |
| 1284 | ||
| 1285 | if((res = mp_init_copy(&x, a)) != MP_OKAY) | |
| 1286 | goto X; | |
| 1287 | ||
| 1288 | /* Loop over low-order digits in ascending order */ | |
| 1289 | for(dig = 0; dig < (USED(b) - 1); dig++) { | |
| 1290 | d = DIGIT(b, dig); | |
| 1291 | ||
| 1292 | /* Loop over bits of each non-maximal digit */ | |
| 1293 | for(bit = 0; bit < DIGIT_BIT; bit++) { | |
| 1294 | if(d & 1) { | |
| 1295 | if((res = s_mp_mul(&s, &x)) != MP_OKAY) | |
| 1296 | goto CLEANUP; | |
| 1297 | } | |
| 1298 | ||
| 1299 | d >>= 1; | |
| 1300 | ||
| 1301 | if((res = s_mp_sqr(&x)) != MP_OKAY) | |
| 1302 | goto CLEANUP; | |
| 1303 | } | |
| 1304 | } | |
| 1305 | ||
| 1306 | /* Consider now the last digit... */ | |
| 1307 | d = DIGIT(b, dig); | |
| 1308 | ||
| 1309 | while(d) { | |
| 1310 | if(d & 1) { | |
| 1311 | if((res = s_mp_mul(&s, &x)) != MP_OKAY) | |
| 1312 | goto CLEANUP; | |
| 1313 | } | |
| 1314 | ||
| 1315 | d >>= 1; | |
| 1316 | ||
| 1317 | if((res = s_mp_sqr(&x)) != MP_OKAY) | |
| 1318 | goto CLEANUP; | |
| 1319 | } | |
| 1320 | ||
| 1321 | if(mp_iseven(b)) | |
| 1322 | SIGN(&s) = SIGN(a); | |
| 1323 | ||
| 1324 | res = mp_copy(&s, c); | |
| 1325 | ||
| 1326 | CLEANUP: | |
| 1327 | mp_clear(&x); | |
| 1328 | X: | |
| 1329 | mp_clear(&s); | |
| 1330 | ||
| 1331 | return res; | |
| 1332 | ||
| 1333 | } /* end mp_expt() */ | |
| 1334 | ||
| 1335 | /* }}} */ | |
| 1336 | ||
| 1337 | /* {{{ mp_2expt(a, k) */ | |
| 1338 | ||
| 1339 | /* Compute a = 2^k */ | |
| 1340 | ||
| 1341 | mp_err mp_2expt(mp_int *a, mp_digit k) | |
| 1342 | { | |
| 1343 | ARGCHK(a != NULL, MP_BADARG); | |
| 1344 | ||
| 1345 | return s_mp_2expt(a, k); | |
| 1346 | ||
| 1347 | } /* end mp_2expt() */ | |
| 1348 | ||
| 1349 | /* }}} */ | |
| 1350 | ||
| 1351 | /* {{{ mp_mod(a, m, c) */ | |
| 1352 | ||
| 1353 | /* | |
| 1354 | mp_mod(a, m, c) | |
| 1355 | ||
| 1356 | Compute c = a (mod m). Result will always be 0 <= c < m. | |
| 1357 | */ | |
| 1358 | ||
| 1359 | mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c) | |
| 1360 | { | |
| 1361 | mp_err res; | |
| 1362 | int mag; | |
| 1363 | ||
| 1364 | ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); | |
| 1365 | ||
| 1366 | if(SIGN(m) == MP_NEG) | |
| 1367 | return MP_RANGE; | |
| 1368 | ||
| 1369 | /* | |
| 1370 | If |a| > m, we need to divide to get the remainder and take the | |
| 1371 | absolute value. | |
| 1372 | ||
| 1373 | If |a| < m, we don't need to do any division, just copy and adjust | |
| 1374 | the sign (if a is negative). | |
| 1375 | ||
| 1376 | If |a| == m, we can simply set the result to zero. | |
| 1377 | ||
| 1378 | This order is intended to minimize the average path length of the | |
| 1379 | comparison chain on common workloads -- the most frequent cases are | |
| 1380 | that |a| != m, so we do those first. | |
| 1381 | */ | |
| 1382 | if((mag = s_mp_cmp(a, m)) > 0) { | |
| 1383 | if((res = mp_div(a, m, NULL, c)) != MP_OKAY) | |
| 1384 | return res; | |
| 1385 | ||
| 1386 | if(SIGN(c) == MP_NEG) { | |
| 1387 | if((res = mp_add(c, m, c)) != MP_OKAY) | |
| 1388 | return res; | |
| 1389 | } | |
| 1390 | ||
| 1391 | } else if(mag < 0) { | |
| 1392 | if((res = mp_copy(a, c)) != MP_OKAY) | |
| 1393 | return res; | |
| 1394 | ||
| 1395 | if(mp_cmp_z(a) < 0) { | |
| 1396 | if((res = mp_add(c, m, c)) != MP_OKAY) | |
| 1397 | return res; | |
| 1398 | ||
| 1399 | } | |
| 1400 | ||
| 1401 | } else { | |
| 1402 | mp_zero(c); | |
| 1403 | ||
| 1404 | } | |
| 1405 | ||
| 1406 | return MP_OKAY; | |
| 1407 | ||
| 1408 | } /* end mp_mod() */ | |
| 1409 | ||
| 1410 | /* }}} */ | |
| 1411 | ||
| 1412 | /* {{{ mp_mod_d(a, d, c) */ | |
| 1413 | ||
| 1414 | /* | |
| 1415 | mp_mod_d(a, d, c) | |
| 1416 | ||
| 1417 | Compute c = a (mod d). Result will always be 0 <= c < d | |
| 1418 | */ | |
| 1419 | mp_err mp_mod_d(mp_int *a, mp_digit d, mp_digit *c) | |
| 1420 | { | |
| 1421 | mp_err res; | |
| 1422 | mp_digit rem; | |
| 1423 | ||
| 1424 | ARGCHK(a != NULL && c != NULL, MP_BADARG); | |
| 1425 | ||
| 1426 | if(s_mp_cmp_d(a, d) > 0) { | |
| 1427 | if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY) | |
| 1428 | return res; | |
| 1429 | ||
| 1430 | } else { | |
| 1431 | if(SIGN(a) == MP_NEG) | |
| 1432 | rem = d - DIGIT(a, 0); | |
| 1433 | else | |
| 1434 | rem = DIGIT(a, 0); | |
| 1435 | } | |
| 1436 | ||
| 1437 | if(c) | |
| 1438 | *c = rem; | |
| 1439 | ||
| 1440 | return MP_OKAY; | |
| 1441 | ||
| 1442 | } /* end mp_mod_d() */ | |
| 1443 | ||
| 1444 | /* }}} */ | |
| 1445 | ||
| 1446 | /* {{{ mp_sqrt(a, b) */ | |
| 1447 | ||
| 1448 | /* | |
| 1449 | mp_sqrt(a, b) | |
| 1450 | ||
| 1451 | Compute the integer square root of a, and store the result in b. | |
| 1452 | Uses an integer-arithmetic version of Newton's iterative linear | |
| 1453 | approximation technique to determine this value; the result has the | |
| 1454 | following two properties: | |
| 1455 | ||
| 1456 | b^2 <= a | |
| 1457 | (b+1)^2 >= a | |
| 1458 | ||
| 1459 | It is a range error to pass a negative value. | |
| 1460 | */ | |
| 1461 | mp_err mp_sqrt(mp_int *a, mp_int *b) | |
| 1462 | { | |
| 1463 | mp_int x, t; | |
| 1464 | mp_err res; | |
| 1465 | ||
| 1466 | ARGCHK(a != NULL && b != NULL, MP_BADARG); | |
| 1467 | ||
| 1468 | /* Cannot take square root of a negative value */ | |
| 1469 | if(SIGN(a) == MP_NEG) | |
| 1470 | return MP_RANGE; | |
| 1471 | ||
| 1472 | /* Special cases for zero and one, trivial */ | |
| 1473 | if(mp_cmp_d(a, 0) == MP_EQ || mp_cmp_d(a, 1) == MP_EQ) | |
| 1474 | return mp_copy(a, b); | |
| 1475 | ||
| 1476 | /* Initialize the temporaries we'll use below */ | |
| 1477 | if((res = mp_init_size(&t, USED(a))) != MP_OKAY) | |
| 1478 | return res; | |
| 1479 | ||
| 1480 | /* Compute an initial guess for the iteration as a itself */ | |
| 1481 | if((res = mp_init_copy(&x, a)) != MP_OKAY) | |
| 1482 | goto X; | |
| 1483 | ||
| 1484 | for(;;) { | |
| 1485 | /* t = (x * x) - a */ | |
| 1486 | mp_copy(&x, &t); /* can't fail, t is big enough for original x */ | |
| 1487 | if((res = mp_sqr(&t, &t)) != MP_OKAY || | |
| 1488 | (res = mp_sub(&t, a, &t)) != MP_OKAY) | |
| 1489 | goto CLEANUP; | |
| 1490 | ||
| 1491 | /* t = t / 2x */ | |
| 1492 | s_mp_mul_2(&x); | |
| 1493 | if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY) | |
| 1494 | goto CLEANUP; | |
| 1495 | s_mp_div_2(&x); | |
| 1496 | ||
| 1497 | /* Terminate the loop, if the quotient is zero */ | |
| 1498 | if(mp_cmp_z(&t) == MP_EQ) | |
| 1499 | break; | |
| 1500 | ||
| 1501 | /* x = x - t */ | |
| 1502 | if((res = mp_sub(&x, &t, &x)) != MP_OKAY) | |
| 1503 | goto CLEANUP; | |
| 1504 | ||
| 1505 | } | |
| 1506 | ||
| 1507 | /* Copy result to output parameter */ | |
| 1508 | mp_sub_d(&x, 1, &x); | |
| 1509 | s_mp_exch(&x, b); | |
| 1510 | ||
| 1511 | CLEANUP: | |
| 1512 | mp_clear(&x); | |
| 1513 | X: | |
| 1514 | mp_clear(&t); | |
| 1515 | ||
| 1516 | return res; | |
| 1517 | ||
| 1518 | } /* end mp_sqrt() */ | |
| 1519 | ||
| 1520 | /* }}} */ | |
| 1521 | ||
| 1522 | /* }}} */ | |
| 1523 | ||
| 1524 | /*------------------------------------------------------------------------*/ | |
| 1525 | /* {{{ Modular arithmetic */ | |
| 1526 | ||
| 1527 | #if MP_MODARITH | |
| 1528 | /* {{{ mp_addmod(a, b, m, c) */ | |
| 1529 | ||
| 1530 | /* | |
| 1531 | mp_addmod(a, b, m, c) | |
| 1532 | ||
| 1533 | Compute c = (a + b) mod m | |
| 1534 | */ | |
| 1535 | ||
| 1536 | mp_err mp_addmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c) | |
| 1537 | { | |
| 1538 | mp_err res; | |
| 1539 | ||
| 1540 | ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); | |
| 1541 | ||
| 1542 | if((res = mp_add(a, b, c)) != MP_OKAY) | |
| 1543 | return res; | |
| 1544 | if((res = mp_mod(c, m, c)) != MP_OKAY) | |
| 1545 | return res; | |
| 1546 | ||
| 1547 | return MP_OKAY; | |
| 1548 | ||
| 1549 | } | |
| 1550 | ||
| 1551 | /* }}} */ | |
| 1552 | ||
| 1553 | /* {{{ mp_submod(a, b, m, c) */ | |
| 1554 | ||
| 1555 | /* | |
| 1556 | mp_submod(a, b, m, c) | |
| 1557 | ||
| 1558 | Compute c = (a - b) mod m | |
| 1559 | */ | |
| 1560 | ||
| 1561 | mp_err mp_submod(mp_int *a, mp_int *b, mp_int *m, mp_int *c) | |
| 1562 | { | |
| 1563 | mp_err res; | |
| 1564 | ||
| 1565 | ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); | |
| 1566 | ||
| 1567 | if((res = mp_sub(a, b, c)) != MP_OKAY) | |
| 1568 | return res; | |
| 1569 | if((res = mp_mod(c, m, c)) != MP_OKAY) | |
| 1570 | return res; | |
| 1571 | ||
| 1572 | return MP_OKAY; | |
| 1573 | ||
| 1574 | } | |
| 1575 | ||
| 1576 | /* }}} */ | |
| 1577 | ||
| 1578 | /* {{{ mp_mulmod(a, b, m, c) */ | |
| 1579 | ||
| 1580 | /* | |
| 1581 | mp_mulmod(a, b, m, c) | |
| 1582 | ||
| 1583 | Compute c = (a * b) mod m | |
| 1584 | */ | |
| 1585 | ||
| 1586 | mp_err mp_mulmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c) | |
| 1587 | { | |
| 1588 | mp_err res; | |
| 1589 | ||
| 1590 | ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); | |
| 1591 | ||
| 1592 | if((res = mp_mul(a, b, c)) != MP_OKAY) | |
| 1593 | return res; | |
| 1594 | if((res = mp_mod(c, m, c)) != MP_OKAY) | |
| 1595 | return res; | |
| 1596 | ||
| 1597 | return MP_OKAY; | |
| 1598 | ||
| 1599 | } | |
| 1600 | ||
| 1601 | /* }}} */ | |
| 1602 | ||
| 1603 | /* {{{ mp_sqrmod(a, m, c) */ | |
| 1604 | ||
| 1605 | #if MP_SQUARE | |
| 1606 | mp_err mp_sqrmod(mp_int *a, mp_int *m, mp_int *c) | |
| 1607 | { | |
| 1608 | mp_err res; | |
| 1609 | ||
| 1610 | ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); | |
| 1611 | ||
| 1612 | if((res = mp_sqr(a, c)) != MP_OKAY) | |
| 1613 | return res; | |
| 1614 | if((res = mp_mod(c, m, c)) != MP_OKAY) | |
| 1615 | return res; | |
| 1616 | ||
| 1617 | return MP_OKAY; | |
| 1618 | ||
| 1619 | } /* end mp_sqrmod() */ | |
| 1620 | #endif | |
| 1621 | ||
| 1622 | /* }}} */ | |
| 1623 | ||
| 1624 | /* {{{ mp_exptmod(a, b, m, c) */ | |
| 1625 | ||
| 1626 | /* | |
| 1627 | mp_exptmod(a, b, m, c) | |
| 1628 | ||
| 1629 | Compute c = (a ** b) mod m. Uses a standard square-and-multiply | |
| 1630 | method with modular reductions at each step. (This is basically the | |
| 1631 | same code as mp_expt(), except for the addition of the reductions) | |
| 1632 | ||
| 1633 | The modular reductions are done using Barrett's algorithm (see | |
| 1634 | s_mp_reduce() below for details) | |
| 1635 | */ | |
| 1636 | ||
| 1637 | mp_err mp_exptmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c) | |
| 1638 | { | |
| 1639 | mp_int s, x, mu; | |
| 1640 | mp_err res; | |
| 1641 | mp_digit d, *db = DIGITS(b); | |
| 1642 | mp_size ub = USED(b); | |
| 1643 | int dig, bit; | |
| 1644 | ||
| 1645 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); | |
| 1646 | ||
| 1647 | if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0) | |
| 1648 | return MP_RANGE; | |
| 1649 | ||
| 1650 | if((res = mp_init(&s)) != MP_OKAY) | |
| 1651 | return res; | |
| 1652 | if((res = mp_init_copy(&x, a)) != MP_OKAY) | |
| 1653 | goto X; | |
| 1654 | if((res = mp_mod(&x, m, &x)) != MP_OKAY || | |
| 1655 | (res = mp_init(&mu)) != MP_OKAY) | |
| 1656 | goto MU; | |
| 1657 | ||
| 1658 | mp_set(&s, 1); | |
| 1659 | ||
| 1660 | /* mu = b^2k / m */ | |
| 1661 | s_mp_add_d(&mu, 1); | |
| 1662 | s_mp_lshd(&mu, 2 * USED(m)); | |
| 1663 | if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY) | |
| 1664 | goto CLEANUP; | |
| 1665 | ||
| 1666 | /* Loop over digits of b in ascending order, except highest order */ | |
| 1667 | for(dig = 0; dig < (ub - 1); dig++) { | |
| 1668 | d = *db++; | |
| 1669 | ||
| 1670 | /* Loop over the bits of the lower-order digits */ | |
| 1671 | for(bit = 0; bit < DIGIT_BIT; bit++) { | |
| 1672 | if(d & 1) { | |
| 1673 | if((res = s_mp_mul(&s, &x)) != MP_OKAY) | |
| 1674 | goto CLEANUP; | |
| 1675 | if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) | |
| 1676 | goto CLEANUP; | |
| 1677 | } | |
| 1678 | ||
| 1679 | d >>= 1; | |
| 1680 | ||
| 1681 | if((res = s_mp_sqr(&x)) != MP_OKAY) | |
| 1682 | goto CLEANUP; | |
| 1683 | if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) | |
| 1684 | goto CLEANUP; | |
| 1685 | } | |
| 1686 | } | |
| 1687 | ||
| 1688 | /* Now do the last digit... */ | |
| 1689 | d = *db; | |
| 1690 | ||
| 1691 | while(d) { | |
| 1692 | if(d & 1) { | |
| 1693 | if((res = s_mp_mul(&s, &x)) != MP_OKAY) | |
| 1694 | goto CLEANUP; | |
| 1695 | if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) | |
| 1696 | goto CLEANUP; | |
| 1697 | } | |
| 1698 | ||
| 1699 | d >>= 1; | |
| 1700 | ||
| 1701 | if((res = s_mp_sqr(&x)) != MP_OKAY) | |
| 1702 | goto CLEANUP; | |
| 1703 | if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) | |
| 1704 | goto CLEANUP; | |
| 1705 | } | |
| 1706 | ||
| 1707 | s_mp_exch(&s, c); | |
| 1708 | ||
| 1709 | CLEANUP: | |
| 1710 | mp_clear(&mu); | |
| 1711 | MU: | |
| 1712 | mp_clear(&x); | |
| 1713 | X: | |
| 1714 | mp_clear(&s); | |
| 1715 | ||
| 1716 | return res; | |
| 1717 | ||
| 1718 | } /* end mp_exptmod() */ | |
| 1719 | ||
| 1720 | /* }}} */ | |
| 1721 | ||
| 1722 | /* {{{ mp_exptmod_d(a, d, m, c) */ | |
| 1723 | ||
| 1724 | mp_err mp_exptmod_d(mp_int *a, mp_digit d, mp_int *m, mp_int *c) | |
| 1725 | { | |
| 1726 | mp_int s, x; | |
| 1727 | mp_err res; | |
| 1728 | ||
| 1729 | ARGCHK(a != NULL && c != NULL, MP_BADARG); | |
| 1730 | ||
| 1731 | if((res = mp_init(&s)) != MP_OKAY) | |
| 1732 | return res; | |
| 1733 | if((res = mp_init_copy(&x, a)) != MP_OKAY) | |
| 1734 | goto X; | |
| 1735 | ||
| 1736 | mp_set(&s, 1); | |
| 1737 | ||
| 1738 | while(d != 0) { | |
| 1739 | if(d & 1) { | |
| 1740 | if((res = s_mp_mul(&s, &x)) != MP_OKAY || | |
| 1741 | (res = mp_mod(&s, m, &s)) != MP_OKAY) | |
| 1742 | goto CLEANUP; | |
| 1743 | } | |
| 1744 | ||
| 1745 | d /= 2; | |
| 1746 | ||
| 1747 | if((res = s_mp_sqr(&x)) != MP_OKAY || | |
| 1748 | (res = mp_mod(&x, m, &x)) != MP_OKAY) | |
| 1749 | goto CLEANUP; | |
| 1750 | } | |
| 1751 | ||
| 1752 | s_mp_exch(&s, c); | |
| 1753 | ||
| 1754 | CLEANUP: | |
| 1755 | mp_clear(&x); | |
| 1756 | X: | |
| 1757 | mp_clear(&s); | |
| 1758 | ||
| 1759 | return res; | |
| 1760 | ||
| 1761 | } /* end mp_exptmod_d() */ | |
| 1762 | ||
| 1763 | /* }}} */ | |
| 1764 | #endif /* if MP_MODARITH */ | |
| 1765 | ||
| 1766 | /* }}} */ | |
| 1767 | ||
| 1768 | /*------------------------------------------------------------------------*/ | |
| 1769 | /* {{{ Comparison functions */ | |
| 1770 | ||
| 1771 | /* {{{ mp_cmp_z(a) */ | |
| 1772 | ||
| 1773 | /* | |
| 1774 | mp_cmp_z(a) | |
| 1775 | ||
| 1776 | Compare a <=> 0. Returns <0 if a<0, 0 if a=0, >0 if a>0. | |
| 1777 | */ | |
| 1778 | ||
| 1779 | int mp_cmp_z(mp_int *a) | |
| 1780 | { | |
| 1781 | if(SIGN(a) == MP_NEG) | |
| 1782 | return MP_LT; | |
| 1783 | else if(USED(a) == 1 && DIGIT(a, 0) == 0) | |
| 1784 | return MP_EQ; | |
| 1785 | else | |
| 1786 | return MP_GT; | |
| 1787 | ||
| 1788 | } /* end mp_cmp_z() */ | |
| 1789 | ||
| 1790 | /* }}} */ | |
| 1791 | ||
| 1792 | /* {{{ mp_cmp_d(a, d) */ | |
| 1793 | ||
| 1794 | /* | |
| 1795 | mp_cmp_d(a, d) | |
| 1796 | ||
| 1797 | Compare a <=> d. Returns <0 if a<d, 0 if a=d, >0 if a>d | |
| 1798 | */ | |
| 1799 | ||
| 1800 | int mp_cmp_d(mp_int *a, mp_digit d) | |
| 1801 | { | |
| 1802 | ARGCHK(a != NULL, MP_EQ); | |
| 1803 | ||
| 1804 | if(SIGN(a) == MP_NEG) | |
| 1805 | return MP_LT; | |
| 1806 | ||
| 1807 | return s_mp_cmp_d(a, d); | |
| 1808 | ||
| 1809 | } /* end mp_cmp_d() */ | |
| 1810 | ||
| 1811 | /* }}} */ | |
| 1812 | ||
| 1813 | /* {{{ mp_cmp(a, b) */ | |
| 1814 | ||
| 1815 | int mp_cmp(mp_int *a, mp_int *b) | |
| 1816 | { | |
| 1817 | ARGCHK(a != NULL && b != NULL, MP_EQ); | |
| 1818 | ||
| 1819 | if(SIGN(a) == SIGN(b)) { | |
| 1820 | int mag; | |
| 1821 | ||
| 1822 | if((mag = s_mp_cmp(a, b)) == MP_EQ) | |
| 1823 | return MP_EQ; | |
| 1824 | ||
| 1825 | if(SIGN(a) == MP_ZPOS) | |
| 1826 | return mag; | |
| 1827 | else | |
| 1828 | return -mag; | |
| 1829 | ||
| 1830 | } else if(SIGN(a) == MP_ZPOS) { | |
| 1831 | return MP_GT; | |
| 1832 | } else { | |
| 1833 | return MP_LT; | |
| 1834 | } | |
| 1835 | ||
| 1836 | } /* end mp_cmp() */ | |
| 1837 | ||
| 1838 | /* }}} */ | |
| 1839 | ||
| 1840 | /* {{{ mp_cmp_mag(a, b) */ | |
| 1841 | ||
| 1842 | /* | |
| 1843 | mp_cmp_mag(a, b) | |
| 1844 | ||
| 1845 | Compares |a| <=> |b|, and returns an appropriate comparison result | |
| 1846 | */ | |
| 1847 | ||
| 1848 | int mp_cmp_mag(mp_int *a, mp_int *b) | |
| 1849 | { | |
| 1850 | ARGCHK(a != NULL && b != NULL, MP_EQ); | |
| 1851 | ||
| 1852 | return s_mp_cmp(a, b); | |
| 1853 | ||
| 1854 | } /* end mp_cmp_mag() */ | |
| 1855 | ||
| 1856 | /* }}} */ | |
| 1857 | ||
| 1858 | /* {{{ mp_cmp_int(a, z) */ | |
| 1859 | ||
| 1860 | /* | |
| 1861 | This just converts z to an mp_int, and uses the existing comparison | |
| 1862 | routines. This is sort of inefficient, but it's not clear to me how | |
| 1863 | frequently this wil get used anyway. For small positive constants, | |
| 1864 | you can always use mp_cmp_d(), and for zero, there is mp_cmp_z(). | |
| 1865 | */ | |
| 1866 | int mp_cmp_int(mp_int *a, long z) | |
| 1867 | { | |
| 1868 | mp_int tmp; | |
| 1869 | int out; | |
| 1870 | ||
| 1871 | ARGCHK(a != NULL, MP_EQ); | |
| 1872 | ||
| 1873 | mp_init(&tmp); mp_set_int(&tmp, z); | |
| 1874 | out = mp_cmp(a, &tmp); | |
| 1875 | mp_clear(&tmp); | |
| 1876 | ||
| 1877 | return out; | |
| 1878 | ||
| 1879 | } /* end mp_cmp_int() */ | |
| 1880 | ||
| 1881 | /* }}} */ | |
| 1882 | ||
| 1883 | /* {{{ mp_isodd(a) */ | |
| 1884 | ||
| 1885 | /* | |
| 1886 | mp_isodd(a) | |
| 1887 | ||
| 1888 | Returns a true (non-zero) value if a is odd, false (zero) otherwise. | |
| 1889 | */ | |
| 1890 | int mp_isodd(mp_int *a) | |
| 1891 | { | |
| 1892 | ARGCHK(a != NULL, 0); | |
| 1893 | ||
| 1894 | return (DIGIT(a, 0) & 1); | |
| 1895 | ||
| 1896 | } /* end mp_isodd() */ | |
| 1897 | ||
| 1898 | /* }}} */ | |
| 1899 | ||
| 1900 | /* {{{ mp_iseven(a) */ | |
| 1901 | ||
| 1902 | int mp_iseven(mp_int *a) | |
| 1903 | { | |
| 1904 | return !mp_isodd(a); | |
| 1905 | ||
| 1906 | } /* end mp_iseven() */ | |
| 1907 | ||
| 1908 | /* }}} */ | |
| 1909 | ||
| 1910 | /* }}} */ | |
| 1911 | ||
| 1912 | /*------------------------------------------------------------------------*/ | |
| 1913 | /* {{{ Number theoretic functions */ | |
| 1914 | ||
| 1915 | #if MP_NUMTH | |
| 1916 | /* {{{ mp_gcd(a, b, c) */ | |
| 1917 | ||
| 1918 | /* | |
| 1919 | Like the old mp_gcd() function, except computes the GCD using the | |
| 1920 | binary algorithm due to Josef Stein in 1961 (via Knuth). | |
| 1921 | */ | |
| 1922 | mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c) | |
| 1923 | { | |
| 1924 | mp_err res; | |
| 1925 | mp_int u, v, t; | |
| 1926 | mp_size k = 0; | |
| 1927 | ||
| 1928 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); | |
| 1929 | ||
| 1930 | if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ) | |
| 1931 | return MP_RANGE; | |
| 1932 | if(mp_cmp_z(a) == MP_EQ) { | |
| 1933 | if((res = mp_copy(b, c)) != MP_OKAY) | |
| 1934 | return res; | |
| 1935 | SIGN(c) = MP_ZPOS; return MP_OKAY; | |
| 1936 | } else if(mp_cmp_z(b) == MP_EQ) { | |
| 1937 | if((res = mp_copy(a, c)) != MP_OKAY) | |
| 1938 | return res; | |
| 1939 | SIGN(c) = MP_ZPOS; return MP_OKAY; | |
| 1940 | } | |
| 1941 | ||
| 1942 | if((res = mp_init(&t)) != MP_OKAY) | |
| 1943 | return res; | |
| 1944 | if((res = mp_init_copy(&u, a)) != MP_OKAY) | |
| 1945 | goto U; | |
| 1946 | if((res = mp_init_copy(&v, b)) != MP_OKAY) | |
| 1947 | goto V; | |
| 1948 | ||
| 1949 | SIGN(&u) = MP_ZPOS; | |
| 1950 | SIGN(&v) = MP_ZPOS; | |
| 1951 | ||
| 1952 | /* Divide out common factors of 2 until at least 1 of a, b is even */ | |
| 1953 | while(mp_iseven(&u) && mp_iseven(&v)) { | |
| 1954 | s_mp_div_2(&u); | |
| 1955 | s_mp_div_2(&v); | |
| 1956 | ++k; | |
| 1957 | } | |
| 1958 | ||
| 1959 | /* Initialize t */ | |
| 1960 | if(mp_isodd(&u)) { | |
| 1961 | if((res = mp_copy(&v, &t)) != MP_OKAY) | |
| 1962 | goto CLEANUP; | |
| 1963 | ||
| 1964 | /* t = -v */ | |
| 1965 | if(SIGN(&v) == MP_ZPOS) | |
| 1966 | SIGN(&t) = MP_NEG; | |
| 1967 | else | |
| 1968 | SIGN(&t) = MP_ZPOS; | |
| 1969 | ||
| 1970 | } else { | |
| 1971 | if((res = mp_copy(&u, &t)) != MP_OKAY) | |
| 1972 | goto CLEANUP; | |
| 1973 | ||
| 1974 | } | |
| 1975 | ||
| 1976 | for(;;) { | |
| 1977 | while(mp_iseven(&t)) { | |
| 1978 | s_mp_div_2(&t); | |
| 1979 | } | |
| 1980 | ||
| 1981 | if(mp_cmp_z(&t) == MP_GT) { | |
| 1982 | if((res = mp_copy(&t, &u)) != MP_OKAY) | |
| 1983 | goto CLEANUP; | |
| 1984 | ||
| 1985 | } else { | |
| 1986 | if((res = mp_copy(&t, &v)) != MP_OKAY) | |
| 1987 | goto CLEANUP; | |
| 1988 | ||
| 1989 | /* v = -t */ | |
| 1990 | if(SIGN(&t) == MP_ZPOS) | |
| 1991 | SIGN(&v) = MP_NEG; | |
| 1992 | else | |
| 1993 | SIGN(&v) = MP_ZPOS; | |
| 1994 | } | |
| 1995 | ||
| 1996 | if((res = mp_sub(&u, &v, &t)) != MP_OKAY) | |
| 1997 | goto CLEANUP; | |
| 1998 | ||
| 1999 | if(s_mp_cmp_d(&t, 0) == MP_EQ) | |
| 2000 | break; | |
| 2001 | } | |
| 2002 | ||
| 2003 | s_mp_2expt(&v, k); /* v = 2^k */ | |
| 2004 | res = mp_mul(&u, &v, c); /* c = u * v */ | |
| 2005 | ||
| 2006 | CLEANUP: | |
| 2007 | mp_clear(&v); | |
| 2008 | V: | |
| 2009 | mp_clear(&u); | |
| 2010 | U: | |
| 2011 | mp_clear(&t); | |
| 2012 | ||
| 2013 | return res; | |
| 2014 | ||
| 2015 | } /* end mp_bgcd() */ | |
| 2016 | ||
| 2017 | /* }}} */ | |
| 2018 | ||
| 2019 | /* {{{ mp_lcm(a, b, c) */ | |
| 2020 | ||
| 2021 | /* We compute the least common multiple using the rule: | |
| 2022 | ||
| 2023 | ab = [a, b](a, b) | |
| 2024 | ||
| 2025 | ... by computing the product, and dividing out the gcd. | |
| 2026 | */ | |
| 2027 | ||
| 2028 | mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c) | |
| 2029 | { | |
| 2030 | mp_int gcd, prod; | |
| 2031 | mp_err res; | |
| 2032 | ||
| 2033 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); | |
| 2034 | ||
| 2035 | /* Set up temporaries */ | |
| 2036 | if((res = mp_init(&gcd)) != MP_OKAY) | |
| 2037 | return res; | |
| 2038 | if((res = mp_init(&prod)) != MP_OKAY) | |
| 2039 | goto GCD; | |
| 2040 | ||
| 2041 | if((res = mp_mul(a, b, &prod)) != MP_OKAY) | |
| 2042 | goto CLEANUP; | |
| 2043 | if((res = mp_gcd(a, b, &gcd)) != MP_OKAY) | |
| 2044 | goto CLEANUP; | |
| 2045 | ||
| 2046 | res = mp_div(&prod, &gcd, c, NULL); | |
| 2047 | ||
| 2048 | CLEANUP: | |
| 2049 | mp_clear(&prod); | |
| 2050 | GCD: | |
| 2051 | mp_clear(&gcd); | |
| 2052 | ||
| 2053 | return res; | |
| 2054 | ||
| 2055 | } /* end mp_lcm() */ | |
| 2056 | ||
| 2057 | /* }}} */ | |
| 2058 | ||
| 2059 | /* {{{ mp_xgcd(a, b, g, x, y) */ | |
| 2060 | ||
| 2061 | /* | |
| 2062 | mp_xgcd(a, b, g, x, y) | |
| 2063 | ||
| 2064 | Compute g = (a, b) and values x and y satisfying Bezout's identity | |
| 2065 | (that is, ax + by = g). This uses the extended binary GCD algorithm | |
| 2066 | based on the Stein algorithm used for mp_gcd() | |
| 2067 | */ | |
| 2068 | ||
| 2069 | mp_err mp_xgcd(mp_int *a, mp_int *b, mp_int *g, mp_int *x, mp_int *y) | |
| 2070 | { | |
| 2071 | mp_int gx, xc, yc, u, v, A, B, C, D; | |
| 2072 | mp_int *clean[9]; | |
| 2073 | mp_err res; | |
| 2074 | int last = -1; | |
| 2075 | ||
| 2076 | if(mp_cmp_z(b) == 0) | |
| 2077 | return MP_RANGE; | |
| 2078 | ||
| 2079 | /* Initialize all these variables we need */ | |
| 2080 | if((res = mp_init(&u)) != MP_OKAY) goto CLEANUP; | |
| 2081 | clean[++last] = &u; | |
| 2082 | if((res = mp_init(&v)) != MP_OKAY) goto CLEANUP; | |
| 2083 | clean[++last] = &v; | |
| 2084 | if((res = mp_init(&gx)) != MP_OKAY) goto CLEANUP; | |
| 2085 | clean[++last] = &gx; | |
| 2086 | if((res = mp_init(&A)) != MP_OKAY) goto CLEANUP; | |
| 2087 | clean[++last] = &A; | |
| 2088 | if((res = mp_init(&B)) != MP_OKAY) goto CLEANUP; | |
| 2089 | clean[++last] = &B; | |
| 2090 | if((res = mp_init(&C)) != MP_OKAY) goto CLEANUP; | |
| 2091 | clean[++last] = &C; | |
| 2092 | if((res = mp_init(&D)) != MP_OKAY) goto CLEANUP; | |
| 2093 | clean[++last] = &D; | |
| 2094 | if((res = mp_init_copy(&xc, a)) != MP_OKAY) goto CLEANUP; | |
| 2095 | clean[++last] = &xc; | |
| 2096 | mp_abs(&xc, &xc); | |
| 2097 | if((res = mp_init_copy(&yc, b)) != MP_OKAY) goto CLEANUP; | |
| 2098 | clean[++last] = &yc; | |
| 2099 | mp_abs(&yc, &yc); | |
| 2100 | ||
| 2101 | mp_set(&gx, 1); | |
| 2102 | ||
| 2103 | /* Divide by two until at least one of them is even */ | |
| 2104 | while(mp_iseven(&xc) && mp_iseven(&yc)) { | |
| 2105 | s_mp_div_2(&xc); | |
| 2106 | s_mp_div_2(&yc); | |
| 2107 | if((res = s_mp_mul_2(&gx)) != MP_OKAY) | |
| 2108 | goto CLEANUP; | |
| 2109 | } | |
| 2110 | ||
| 2111 | mp_copy(&xc, &u); | |
| 2112 | mp_copy(&yc, &v); | |
| 2113 | mp_set(&A, 1); mp_set(&D, 1); | |
| 2114 | ||
| 2115 | /* Loop through binary GCD algorithm */ | |
| 2116 | for(;;) { | |
| 2117 | while(mp_iseven(&u)) { | |
| 2118 | s_mp_div_2(&u); | |
| 2119 | ||
| 2120 | if(mp_iseven(&A) && mp_iseven(&B)) { | |
| 2121 | s_mp_div_2(&A); s_mp_div_2(&B); | |
| 2122 | } else { | |
| 2123 | if((res = mp_add(&A, &yc, &A)) != MP_OKAY) goto CLEANUP; | |
| 2124 | s_mp_div_2(&A); | |
| 2125 | if((res = mp_sub(&B, &xc, &B)) != MP_OKAY) goto CLEANUP; | |
| 2126 | s_mp_div_2(&B); | |
| 2127 | } | |
| 2128 | } | |
| 2129 | ||
| 2130 | while(mp_iseven(&v)) { | |
| 2131 | s_mp_div_2(&v); | |
| 2132 | ||
| 2133 | if(mp_iseven(&C) && mp_iseven(&D)) { | |
| 2134 | s_mp_div_2(&C); s_mp_div_2(&D); | |
| 2135 | } else { | |
| 2136 | if((res = mp_add(&C, &yc, &C)) != MP_OKAY) goto CLEANUP; | |
| 2137 | s_mp_div_2(&C); | |
| 2138 | if((res = mp_sub(&D, &xc, &D)) != MP_OKAY) goto CLEANUP; | |
| 2139 | s_mp_div_2(&D); | |
| 2140 | } | |
| 2141 | } | |
| 2142 | ||
| 2143 | if(mp_cmp(&u, &v) >= 0) { | |
| 2144 | if((res = mp_sub(&u, &v, &u)) != MP_OKAY) goto CLEANUP; | |
| 2145 | if((res = mp_sub(&A, &C, &A)) != MP_OKAY) goto CLEANUP; | |
| 2146 | if((res = mp_sub(&B, &D, &B)) != MP_OKAY) goto CLEANUP; | |
| 2147 | ||
| 2148 | } else { | |
| 2149 | if((res = mp_sub(&v, &u, &v)) != MP_OKAY) goto CLEANUP; | |
| 2150 | if((res = mp_sub(&C, &A, &C)) != MP_OKAY) goto CLEANUP; | |
| 2151 | if((res = mp_sub(&D, &B, &D)) != MP_OKAY) goto CLEANUP; | |
| 2152 | ||
| 2153 | } | |
| 2154 | ||
| 2155 | /* If we're done, copy results to output */ | |
| 2156 | if(mp_cmp_z(&u) == 0) { | |
| 2157 | if(x) | |
| 2158 | if((res = mp_copy(&C, x)) != MP_OKAY) goto CLEANUP; | |
| 2159 | ||
| 2160 | if(y) | |
| 2161 | if((res = mp_copy(&D, y)) != MP_OKAY) goto CLEANUP; | |
| 2162 | ||
| 2163 | if(g) | |
| 2164 | if((res = mp_mul(&gx, &v, g)) != MP_OKAY) goto CLEANUP; | |
| 2165 | ||
| 2166 | break; | |
| 2167 | } | |
| 2168 | } | |
| 2169 | ||
| 2170 | CLEANUP: | |
| 2171 | while(last >= 0) | |
| 2172 | mp_clear(clean[last--]); | |
| 2173 | ||
| 2174 | return res; | |
| 2175 | ||
| 2176 | } /* end mp_xgcd() */ | |
| 2177 | ||
| 2178 | /* }}} */ | |
| 2179 | ||
| 2180 | /* {{{ mp_invmod(a, m, c) */ | |
| 2181 | ||
| 2182 | /* | |
| 2183 | mp_invmod(a, m, c) | |
| 2184 | ||
| 2185 | Compute c = a^-1 (mod m), if there is an inverse for a (mod m). | |
| 2186 | This is equivalent to the question of whether (a, m) = 1. If not, | |
| 2187 | MP_UNDEF is returned, and there is no inverse. | |
| 2188 | */ | |
| 2189 | ||
| 2190 | mp_err mp_invmod(mp_int *a, mp_int *m, mp_int *c) | |
| 2191 | { | |
| 2192 | mp_int g, x; | |
| 2193 | mp_sign sa; | |
| 2194 | mp_err res; | |
| 2195 | ||
| 2196 | ARGCHK(a && m && c, MP_BADARG); | |
| 2197 | ||
| 2198 | if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) | |
| 2199 | return MP_RANGE; | |
| 2200 | ||
| 2201 | sa = SIGN(a); | |
| 2202 | ||
| 2203 | if((res = mp_init(&g)) != MP_OKAY) | |
| 2204 | return res; | |
| 2205 | if((res = mp_init(&x)) != MP_OKAY) | |
| 2206 | goto X; | |
| 2207 | ||
| 2208 | if((res = mp_xgcd(a, m, &g, &x, NULL)) != MP_OKAY) | |
| 2209 | goto CLEANUP; | |
| 2210 | ||
| 2211 | if(mp_cmp_d(&g, 1) != MP_EQ) { | |
| 2212 | res = MP_UNDEF; | |
| 2213 | goto CLEANUP; | |
| 2214 | } | |
| 2215 | ||
| 2216 | res = mp_mod(&x, m, c); | |
| 2217 | SIGN(c) = sa; | |
| 2218 | ||
| 2219 | CLEANUP: | |
| 2220 | mp_clear(&x); | |
| 2221 | X: | |
| 2222 | mp_clear(&g); | |
| 2223 | ||
| 2224 | return res; | |
| 2225 | ||
| 2226 | } /* end mp_invmod() */ | |
| 2227 | ||
| 2228 | /* }}} */ | |
| 2229 | #endif /* if MP_NUMTH */ | |
| 2230 | ||
| 2231 | /* }}} */ | |
| 2232 | ||
| 2233 | /*------------------------------------------------------------------------*/ | |
| 2234 | /* {{{ mp_print(mp, ofp) */ | |
| 2235 | ||
| 2236 | #if MP_IOFUNC | |
| 2237 | /* | |
| 2238 | mp_print(mp, ofp) | |
| 2239 | ||
| 2240 | Print a textual representation of the given mp_int on the output | |
| 2241 | stream 'ofp'. Output is generated using the internal radix. | |
| 2242 | */ | |
| 2243 | ||
| 2244 | void mp_print(mp_int *mp, FILE *ofp) | |
| 2245 | { | |
| 2246 | int ix; | |
| 2247 | ||
| 2248 | if(mp == NULL || ofp == NULL) | |
| 2249 | return; | |
| 2250 | ||
| 2251 | fputc((SIGN(mp) == MP_NEG) ? '-' : '+', ofp); | |
| 2252 | ||
| 2253 | for(ix = USED(mp) - 1; ix >= 0; ix--) { | |
| 2254 | fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix)); | |
| 2255 | } | |
| 2256 | ||
| 2257 | } /* end mp_print() */ | |
| 2258 | ||
| 2259 | #endif /* if MP_IOFUNC */ | |
| 2260 | ||
| 2261 | /* }}} */ | |
| 2262 | ||
| 2263 | /*------------------------------------------------------------------------*/ | |
| 2264 | /* {{{ More I/O Functions */ | |
| 2265 | ||
| 2266 | /* {{{ mp_read_signed_bin(mp, str, len) */ | |
| 2267 | ||
| 2268 | /* | |
| 2269 | mp_read_signed_bin(mp, str, len) | |
| 2270 | ||
| 2271 | Read in a raw value (base 256) into the given mp_int | |
| 2272 | */ | |
| 2273 | ||
| 2274 | mp_err mp_read_signed_bin(mp_int *mp, unsigned char *str, int len) | |
| 2275 | { | |
| 2276 | mp_err res; | |
| 2277 | ||
| 2278 | ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); | |
| 2279 | ||
| 2280 | if((res = mp_read_unsigned_bin(mp, str + 1, len - 1)) == MP_OKAY) { | |
| 2281 | /* Get sign from first byte */ | |
| 2282 | if(str[0]) | |
| 2283 | SIGN(mp) = MP_NEG; | |
| 2284 | else | |
| 2285 | SIGN(mp) = MP_ZPOS; | |
| 2286 | } | |
| 2287 | ||
| 2288 | return res; | |
| 2289 | ||
| 2290 | } /* end mp_read_signed_bin() */ | |
| 2291 | ||
| 2292 | /* }}} */ | |
| 2293 | ||
| 2294 | /* {{{ mp_signed_bin_size(mp) */ | |
| 2295 | ||
| 2296 | int mp_signed_bin_size(mp_int *mp) | |
| 2297 | { | |
| 2298 | ARGCHK(mp != NULL, 0); | |
| 2299 | ||
| 2300 | return mp_unsigned_bin_size(mp) + 1; | |
| 2301 | ||
| 2302 | } /* end mp_signed_bin_size() */ | |
| 2303 | ||
| 2304 | /* }}} */ | |
| 2305 | ||
| 2306 | /* {{{ mp_to_signed_bin(mp, str) */ | |
| 2307 | ||
| 2308 | mp_err mp_to_signed_bin(mp_int *mp, unsigned char *str) | |
| 2309 | { | |
| 2310 | ARGCHK(mp != NULL && str != NULL, MP_BADARG); | |
| 2311 | ||
| 2312 | /* Caller responsible for allocating enough memory (use mp_raw_size(mp)) */ | |
| 2313 | str[0] = (char)SIGN(mp); | |
| 2314 | ||
| 2315 | return mp_to_unsigned_bin(mp, str + 1); | |
| 2316 | ||
| 2317 | } /* end mp_to_signed_bin() */ | |
| 2318 | ||
| 2319 | /* }}} */ | |
| 2320 | ||
| 2321 | /* {{{ mp_read_unsigned_bin(mp, str, len) */ | |
| 2322 | ||
| 2323 | /* | |
| 2324 | mp_read_unsigned_bin(mp, str, len) | |
| 2325 | ||
| 2326 | Read in an unsigned value (base 256) into the given mp_int | |
| 2327 | */ | |
| 2328 | ||
| 2329 | mp_err mp_read_unsigned_bin(mp_int *mp, unsigned char *str, int len) | |
| 2330 | { | |
| 2331 | int ix; | |
| 2332 | mp_err res; | |
| 2333 | ||
| 2334 | ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); | |
| 2335 | ||
| 2336 | mp_zero(mp); | |
| 2337 | ||
| 2338 | for(ix = 0; ix < len; ix++) { | |
| 2339 | if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY) | |
| 2340 | return res; | |
| 2341 | ||
| 2342 | if((res = mp_add_d(mp, str[ix], mp)) != MP_OKAY) | |
| 2343 | return res; | |
| 2344 | } | |
| 2345 | ||
| 2346 | return MP_OKAY; | |
| 2347 | ||
| 2348 | } /* end mp_read_unsigned_bin() */ | |
| 2349 | ||
| 2350 | /* }}} */ | |
| 2351 | ||
| 2352 | /* {{{ mp_unsigned_bin_size(mp) */ | |
| 2353 | ||
| 2354 | int mp_unsigned_bin_size(mp_int *mp) | |
| 2355 | { | |
| 2356 | mp_digit topdig; | |
| 2357 | int count; | |
| 2358 | ||
| 2359 | ARGCHK(mp != NULL, 0); | |
| 2360 | ||
| 2361 | /* Special case for the value zero */ | |
| 2362 | if(USED(mp) == 1 && DIGIT(mp, 0) == 0) | |
| 2363 | return 1; | |
| 2364 | ||
| 2365 | count = (USED(mp) - 1) * sizeof(mp_digit); | |
| 2366 | topdig = DIGIT(mp, USED(mp) - 1); | |
| 2367 | ||
| 2368 | while(topdig != 0) { | |
| 2369 | ++count; | |
| 2370 | topdig >>= CHAR_BIT; | |
| 2371 | } | |
| 2372 | ||
| 2373 | return count; | |
| 2374 | ||
| 2375 | } /* end mp_unsigned_bin_size() */ | |
| 2376 | ||
| 2377 | /* }}} */ | |
| 2378 | ||
| 2379 | /* {{{ mp_to_unsigned_bin(mp, str) */ | |
| 2380 | ||
| 2381 | mp_err mp_to_unsigned_bin(mp_int *mp, unsigned char *str) | |
| 2382 | { | |
| 2383 | mp_digit *dp, *end, d; | |
| 2384 | unsigned char *spos; | |
| 2385 | ||
| 2386 | ARGCHK(mp != NULL && str != NULL, MP_BADARG); | |
| 2387 | ||
| 2388 | dp = DIGITS(mp); | |
| 2389 | end = dp + USED(mp) - 1; | |
| 2390 | spos = str; | |
| 2391 | ||
| 2392 | /* Special case for zero, quick test */ | |
| 2393 | if(dp == end && *dp == 0) { | |
| 2394 | *str = '\0'; | |
| 2395 | return MP_OKAY; | |
| 2396 | } | |
| 2397 | ||
| 2398 | /* Generate digits in reverse order */ | |
| 2399 | while(dp < end) { | |
| 2400 | int ix; | |
| 2401 | ||
| 2402 | d = *dp; | |
| 2403 | for(ix = 0; ix < sizeof(mp_digit); ++ix) { | |
| 2404 | *spos = d & UCHAR_MAX; | |
| 2405 | d >>= CHAR_BIT; | |
| 2406 | ++spos; | |
| 2407 | } | |
| 2408 | ||
| 2409 | ++dp; | |
| 2410 | } | |
| 2411 | ||
| 2412 | /* Now handle last digit specially, high order zeroes are not written */ | |
| 2413 | d = *end; | |
| 2414 | while(d != 0) { | |
| 2415 | *spos = d & UCHAR_MAX; | |
| 2416 | d >>= CHAR_BIT; | |
| 2417 | ++spos; | |
| 2418 | } | |
| 2419 | ||
| 2420 | /* Reverse everything to get digits in the correct order */ | |
| 2421 | while(--spos > str) { | |
| 2422 | unsigned char t = *str; | |
| 2423 | *str = *spos; | |
| 2424 | *spos = t; | |
| 2425 | ||
| 2426 | ++str; | |
| 2427 | } | |
| 2428 | ||
| 2429 | return MP_OKAY; | |
| 2430 | ||
| 2431 | } /* end mp_to_unsigned_bin() */ | |
| 2432 | ||
| 2433 | /* }}} */ | |
| 2434 | ||
| 2435 | /* {{{ mp_count_bits(mp) */ | |
| 2436 | ||
| 2437 | int mp_count_bits(mp_int *mp) | |
| 2438 | { | |
| 2439 | int len; | |
| 2440 | mp_digit d; | |
| 2441 | ||
| 2442 | ARGCHK(mp != NULL, MP_BADARG); | |
| 2443 | ||
| 2444 | len = DIGIT_BIT * (USED(mp) - 1); | |
| 2445 | d = DIGIT(mp, USED(mp) - 1); | |
| 2446 | ||
| 2447 | while(d != 0) { | |
| 2448 | ++len; | |
| 2449 | d >>= 1; | |
| 2450 | } | |
| 2451 | ||
| 2452 | return len; | |
| 2453 | ||
| 2454 | } /* end mp_count_bits() */ | |
| 2455 | ||
| 2456 | /* }}} */ | |
| 2457 | ||
| 2458 | /* {{{ mp_read_radix(mp, str, radix) */ | |
| 2459 | ||
| 2460 | /* | |
| 2461 | mp_read_radix(mp, str, radix) | |
| 2462 | ||
| 2463 | Read an integer from the given string, and set mp to the resulting | |
| 2464 | value. The input is presumed to be in base 10. Leading non-digit | |
| 2465 | characters are ignored, and the function reads until a non-digit | |
| 2466 | character or the end of the string. | |
| 2467 | */ | |
| 2468 | ||
| 2469 | mp_err mp_read_radix(mp_int *mp, unsigned char *str, int radix) | |
| 2470 | { | |
| 2471 | int ix = 0, val = 0; | |
| 2472 | mp_err res; | |
| 2473 | mp_sign sig = MP_ZPOS; | |
| 2474 | ||
| 2475 | ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX, | |
| 2476 | MP_BADARG); | |
| 2477 | ||
| 2478 | mp_zero(mp); | |
| 2479 | ||
| 2480 | /* Skip leading non-digit characters until a digit or '-' or '+' */ | |
| 2481 | while(str[ix] && | |
| 2482 | (s_mp_tovalue(str[ix], radix) < 0) && | |
| 2483 | str[ix] != '-' && | |
| 2484 | str[ix] != '+') { | |
| 2485 | ++ix; | |
| 2486 | } | |
| 2487 | ||
| 2488 | if(str[ix] == '-') { | |
| 2489 | sig = MP_NEG; | |
| 2490 | ++ix; | |
| 2491 | } else if(str[ix] == '+') { | |
| 2492 | sig = MP_ZPOS; /* this is the default anyway... */ | |
| 2493 | ++ix; | |
| 2494 | } | |
| 2495 | ||
| 2496 | while((val = s_mp_tovalue(str[ix], radix)) >= 0) { | |
| 2497 | if((res = s_mp_mul_d(mp, radix)) != MP_OKAY) | |
| 2498 | return res; | |
| 2499 | if((res = s_mp_add_d(mp, val)) != MP_OKAY) | |
| 2500 | return res; | |
| 2501 | ++ix; | |
| 2502 | } | |
| 2503 | ||
| 2504 | if(s_mp_cmp_d(mp, 0) == MP_EQ) | |
| 2505 | SIGN(mp) = MP_ZPOS; | |
| 2506 | else | |
| 2507 | SIGN(mp) = sig; | |
| 2508 | ||
| 2509 | return MP_OKAY; | |
| 2510 | ||
| 2511 | } /* end mp_read_radix() */ | |
| 2512 | ||
| 2513 | /* }}} */ | |
| 2514 | ||
| 2515 | /* {{{ mp_radix_size(mp, radix) */ | |
| 2516 | ||
| 2517 | int mp_radix_size(mp_int *mp, int radix) | |
| 2518 | { | |
| 2519 | int len; | |
| 2520 | ARGCHK(mp != NULL, 0); | |
| 2521 | ||
| 2522 | len = s_mp_outlen(mp_count_bits(mp), radix) + 1; /* for NUL terminator */ | |
| 2523 | ||
| 2524 | if(mp_cmp_z(mp) < 0) | |
| 2525 | ++len; /* for sign */ | |
| 2526 | ||
| 2527 | return len; | |
| 2528 | ||
| 2529 | } /* end mp_radix_size() */ | |
| 2530 | ||
| 2531 | /* }}} */ | |
| 2532 | ||
| 2533 | /* {{{ mp_value_radix_size(num, qty, radix) */ | |
| 2534 | ||
| 2535 | /* num = number of digits | |
| 2536 | qty = number of bits per digit | |
| 2537 | radix = target base | |
| 2538 | ||
| 2539 | Return the number of digits in the specified radix that would be | |
| 2540 | needed to express 'num' digits of 'qty' bits each. | |
| 2541 | */ | |
| 2542 | int mp_value_radix_size(int num, int qty, int radix) | |
| 2543 | { | |
| 2544 | ARGCHK(num >= 0 && qty > 0 && radix >= 2 && radix <= MAX_RADIX, 0); | |
| 2545 | ||
| 2546 | return s_mp_outlen(num * qty, radix); | |
| 2547 | ||
| 2548 | } /* end mp_value_radix_size() */ | |
| 2549 | ||
| 2550 | /* }}} */ | |
| 2551 | ||
| 2552 | /* {{{ mp_toradix(mp, str, radix) */ | |
| 2553 | ||
| 2554 | mp_err mp_toradix(mp_int *mp, unsigned char *str, int radix) | |
| 2555 | { | |
| 2556 | int ix, pos = 0; | |
| 2557 | ||
| 2558 | ARGCHK(mp != NULL && str != NULL, MP_BADARG); | |
| 2559 | ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE); | |
| 2560 | ||
| 2561 | if(mp_cmp_z(mp) == MP_EQ) { | |
| 2562 | str[0] = '0'; | |
| 2563 | str[1] = '\0'; | |
| 2564 | } else { | |
| 2565 | mp_err res; | |
| 2566 | mp_int tmp; | |
| 2567 | mp_sign sgn; | |
| 2568 | mp_digit rem, rdx = (mp_digit)radix; | |
| 2569 | char ch; | |
| 2570 | ||
| 2571 | if((res = mp_init_copy(&tmp, mp)) != MP_OKAY) | |
| 2572 | return res; | |
| 2573 | ||
| 2574 | /* Save sign for later, and take absolute value */ | |
| 2575 | sgn = SIGN(&tmp); SIGN(&tmp) = MP_ZPOS; | |
| 2576 | ||
| 2577 | /* Generate output digits in reverse order */ | |
| 2578 | while(mp_cmp_z(&tmp) != 0) { | |
| 2579 | if((res = s_mp_div_d(&tmp, rdx, &rem)) != MP_OKAY) { | |
| 2580 | mp_clear(&tmp); | |
| 2581 | return res; | |
| 2582 | } | |
| 2583 | ||
| 2584 | /* Generate digits, use capital letters */ | |
| 2585 | ch = s_mp_todigit(rem, radix, 0); | |
| 2586 | ||
| 2587 | str[pos++] = ch; | |
| 2588 | } | |
| 2589 | ||
| 2590 | /* Add - sign if original value was negative */ | |
| 2591 | if(sgn == MP_NEG) | |
| 2592 | str[pos++] = '-'; | |
| 2593 | ||
| 2594 | /* Add trailing NUL to end the string */ | |
| 2595 | str[pos--] = '\0'; | |
| 2596 | ||
| 2597 | /* Reverse the digits and sign indicator */ | |
| 2598 | ix = 0; | |
| 2599 | while(ix < pos) { | |
| 2600 | char tmp = str[ix]; | |
| 2601 | ||
| 2602 | str[ix] = str[pos]; | |
| 2603 | str[pos] = tmp; | |
| 2604 | ++ix; | |
| 2605 | --pos; | |
| 2606 | } | |
| 2607 | ||
| 2608 | mp_clear(&tmp); | |
| 2609 | } | |
| 2610 | ||
| 2611 | return MP_OKAY; | |
| 2612 | ||
| 2613 | } /* end mp_toradix() */ | |
| 2614 | ||
| 2615 | /* }}} */ | |
| 2616 | ||
| 2617 | /* {{{ mp_char2value(ch, r) */ | |
| 2618 | ||
| 2619 | int mp_char2value(char ch, int r) | |
| 2620 | { | |
| 2621 | return s_mp_tovalue(ch, r); | |
| 2622 | ||
| 2623 | } /* end mp_tovalue() */ | |
| 2624 | ||
| 2625 | /* }}} */ | |
| 2626 | ||
| 2627 | /* }}} */ | |
| 2628 | ||
| 2629 | /* {{{ mp_strerror(ec) */ | |
| 2630 | ||
| 2631 | /* | |
| 2632 | mp_strerror(ec) | |
| 2633 | ||
| 2634 | Return a string describing the meaning of error code 'ec'. The | |
| 2635 | string returned is allocated in static memory, so the caller should | |
| 2636 | not attempt to modify or free the memory associated with this | |
| 2637 | string. | |
| 2638 | */ | |
| 2639 | const char *mp_strerror(mp_err ec) | |
| 2640 | { | |
| 2641 | int aec = (ec < 0) ? -ec : ec; | |
| 2642 | ||
| 2643 | /* Code values are negative, so the senses of these comparisons | |
| 2644 | are accurate */ | |
| 2645 | if(ec < MP_LAST_CODE || ec > MP_OKAY) { | |
| 2646 | return mp_err_string[0]; /* unknown error code */ | |
| 2647 | } else { | |
| 2648 | return mp_err_string[aec + 1]; | |
| 2649 | } | |
| 2650 | ||
| 2651 | } /* end mp_strerror() */ | |
| 2652 | ||
| 2653 | /* }}} */ | |
| 2654 | ||
| 2655 | /*========================================================================*/ | |
| 2656 | /*------------------------------------------------------------------------*/ | |
| 2657 | /* Static function definitions (internal use only) */ | |
| 2658 | ||
| 2659 | /* {{{ Memory management */ | |
| 2660 | ||
| 2661 | /* {{{ s_mp_grow(mp, min) */ | |
| 2662 | ||
| 2663 | /* Make sure there are at least 'min' digits allocated to mp */ | |
| 2664 | mp_err s_mp_grow(mp_int *mp, mp_size min) | |
| 2665 | { | |
| 2666 | if(min > ALLOC(mp)) { | |
| 2667 | mp_digit *tmp; | |
| 2668 | ||
| 2669 | /* Set min to next nearest default precision block size */ | |
| 2670 | min = ((min + (s_mp_defprec - 1)) / s_mp_defprec) * s_mp_defprec; | |
| 2671 | ||
| 2672 | if((tmp = s_mp_alloc(min, sizeof(mp_digit))) == NULL) | |
| 2673 | return MP_MEM; | |
| 2674 | ||
| 2675 | s_mp_copy(DIGITS(mp), tmp, USED(mp)); | |
| 2676 | ||
| 2677 | #if MP_CRYPTO | |
| 2678 | s_mp_setz(DIGITS(mp), ALLOC(mp)); | |
| 2679 | #endif | |
| 2680 | s_mp_free(DIGITS(mp)); | |
| 2681 | DIGITS(mp) = tmp; | |
| 2682 | ALLOC(mp) = min; | |
| 2683 | } | |
| 2684 | ||
| 2685 | return MP_OKAY; | |
| 2686 | ||
| 2687 | } /* end s_mp_grow() */ | |
| 2688 | ||
| 2689 | /* }}} */ | |
| 2690 | ||
| 2691 | /* {{{ s_mp_pad(mp, min) */ | |
| 2692 | ||
| 2693 | /* Make sure the used size of mp is at least 'min', growing if needed */ | |
| 2694 | mp_err s_mp_pad(mp_int *mp, mp_size min) | |
| 2695 | { | |
| 2696 | if(min > USED(mp)) { | |
| 2697 | mp_err res; | |
| 2698 | ||
| 2699 | /* Make sure there is room to increase precision */ | |
| 2700 | if(min > ALLOC(mp) && (res = s_mp_grow(mp, min)) != MP_OKAY) | |
| 2701 | return res; | |
| 2702 | ||
| 2703 | /* Increase precision; should already be 0-filled */ | |
| 2704 | USED(mp) = min; | |
| 2705 | } | |
| 2706 | ||
| 2707 | return MP_OKAY; | |
| 2708 | ||
| 2709 | } /* end s_mp_pad() */ | |
| 2710 | ||
| 2711 | /* }}} */ | |
| 2712 | ||
| 2713 | /* {{{ s_mp_setz(dp, count) */ | |
| 2714 | ||
| 2715 | #if MP_MACRO == 0 | |
| 2716 | /* Set 'count' digits pointed to by dp to be zeroes */ | |
| 2717 | void s_mp_setz(mp_digit *dp, mp_size count) | |
| 2718 | { | |
| 2719 | #if MP_MEMSET == 0 | |
| 2720 | int ix; | |
| 2721 | ||
| 2722 | for(ix = 0; ix < count; ix++) | |
| 2723 | dp[ix] = 0; | |
| 2724 | #else | |
| 2725 | memset(dp, 0, count * sizeof(mp_digit)); | |
| 2726 | #endif | |
| 2727 | ||
| 2728 | } /* end s_mp_setz() */ | |
| 2729 | #endif | |
| 2730 | ||
| 2731 | /* }}} */ | |
| 2732 | ||
| 2733 | /* {{{ s_mp_copy(sp, dp, count) */ | |
| 2734 | ||
| 2735 | #if MP_MACRO == 0 | |
| 2736 | /* Copy 'count' digits from sp to dp */ | |
| 2737 | void s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count) | |
| 2738 | { | |
| 2739 | #if MP_MEMCPY == 0 | |
| 2740 | int ix; | |
| 2741 | ||
| 2742 | for(ix = 0; ix < count; ix++) | |
| 2743 | dp[ix] = sp[ix]; | |
| 2744 | #else | |
| 2745 | memcpy(dp, sp, count * sizeof(mp_digit)); | |
| 2746 | #endif | |
| 2747 | ||
| 2748 | } /* end s_mp_copy() */ | |
| 2749 | #endif | |
| 2750 | ||
| 2751 | /* }}} */ | |
| 2752 | ||
| 2753 | /* {{{ s_mp_alloc(nb, ni) */ | |
| 2754 | ||
| 2755 | #if MP_MACRO == 0 | |
| 2756 | /* Allocate ni records of nb bytes each, and return a pointer to that */ | |
| 2757 | void *s_mp_alloc(size_t nb, size_t ni) | |
| 2758 | { | |
| 2759 | return calloc(nb, ni); | |
| 2760 | ||
| 2761 | } /* end s_mp_alloc() */ | |
| 2762 | #endif | |
| 2763 | ||
| 2764 | /* }}} */ | |
| 2765 | ||
| 2766 | /* {{{ s_mp_free(ptr) */ | |
| 2767 | ||
| 2768 | #if MP_MACRO == 0 | |
| 2769 | /* Free the memory pointed to by ptr */ | |
| 2770 | void s_mp_free(void *ptr) | |
| 2771 | { | |
| 2772 | if(ptr) | |
| 2773 | free(ptr); | |
| 2774 | ||
| 2775 | } /* end s_mp_free() */ | |
| 2776 | #endif | |
| 2777 | ||
| 2778 | /* }}} */ | |
| 2779 | ||
| 2780 | /* {{{ s_mp_clamp(mp) */ | |
| 2781 | ||
| 2782 | /* Remove leading zeroes from the given value */ | |
| 2783 | void s_mp_clamp(mp_int *mp) | |
| 2784 | { | |
| 2785 | mp_size du = USED(mp); | |
| 2786 | mp_digit *zp = DIGITS(mp) + du - 1; | |
| 2787 | ||
| 2788 | while(du > 1 && !*zp--) | |
| 2789 | --du; | |
| 2790 | ||
| 2791 | if(du == 1 && *zp == 0) | |
| 2792 | SIGN(mp) = MP_ZPOS; | |
| 2793 | ||
| 2794 | USED(mp) = du; | |
| 2795 | ||
| 2796 | } /* end s_mp_clamp() */ | |
| 2797 | ||
| 2798 | ||
| 2799 | /* }}} */ | |
| 2800 | ||
| 2801 | /* {{{ s_mp_exch(a, b) */ | |
| 2802 | ||
| 2803 | /* Exchange the data for a and b; (b, a) = (a, b) */ | |
| 2804 | void s_mp_exch(mp_int *a, mp_int *b) | |
| 2805 | { | |
| 2806 | mp_int tmp; | |
| 2807 | ||
| 2808 | tmp = *a; | |
| 2809 | *a = *b; | |
| 2810 | *b = tmp; | |
| 2811 | ||
| 2812 | } /* end s_mp_exch() */ | |
| 2813 | ||
| 2814 | /* }}} */ | |
| 2815 | ||
| 2816 | /* }}} */ | |
| 2817 | ||
| 2818 | /* {{{ Arithmetic helpers */ | |
| 2819 | ||
| 2820 | /* {{{ s_mp_lshd(mp, p) */ | |
| 2821 | ||
| 2822 | /* | |
| 2823 | Shift mp leftward by p digits, growing if needed, and zero-filling | |
| 2824 | the in-shifted digits at the right end. This is a convenient | |
| 2825 | alternative to multiplication by powers of the radix | |
| 2826 | */ | |
| 2827 | ||
| 2828 | mp_err s_mp_lshd(mp_int *mp, mp_size p) | |
| 2829 | { | |
| 2830 | mp_err res; | |
| 2831 | mp_size pos; | |
| 2832 | mp_digit *dp; | |
| 2833 | int ix; | |
| 2834 | ||
| 2835 | if(p == 0) | |
| 2836 | return MP_OKAY; | |
| 2837 | ||
| 2838 | if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY) | |
| 2839 | return res; | |
| 2840 | ||
| 2841 | pos = USED(mp) - 1; | |
| 2842 | dp = DIGITS(mp); | |
| 2843 | ||
| 2844 | /* Shift all the significant figures over as needed */ | |
| 2845 | for(ix = pos - p; ix >= 0; ix--) | |
| 2846 | dp[ix + p] = dp[ix]; | |
| 2847 | ||
| 2848 | /* Fill the bottom digits with zeroes */ | |
| 2849 | for(ix = 0; ix < p; ix++) | |
| 2850 | dp[ix] = 0; | |
| 2851 | ||
| 2852 | return MP_OKAY; | |
| 2853 | ||
| 2854 | } /* end s_mp_lshd() */ | |
| 2855 | ||
| 2856 | /* }}} */ | |
| 2857 | ||
| 2858 | /* {{{ s_mp_rshd(mp, p) */ | |
| 2859 | ||
| 2860 | /* | |
| 2861 | Shift mp rightward by p digits. Maintains the invariant that | |
| 2862 | digits above the precision are all zero. Digits shifted off the | |
| 2863 | end are lost. Cannot fail. | |
| 2864 | */ | |
| 2865 | ||
| 2866 | void s_mp_rshd(mp_int *mp, mp_size p) | |
| 2867 | { | |
| 2868 | mp_size ix; | |
| 2869 | mp_digit *dp; | |
| 2870 | ||
| 2871 | if(p == 0) | |
| 2872 | return; | |
| 2873 | ||
| 2874 | /* Shortcut when all digits are to be shifted off */ | |
| 2875 | if(p >= USED(mp)) { | |
| 2876 | s_mp_setz(DIGITS(mp), ALLOC(mp)); | |
| 2877 | USED(mp) = 1; | |
| 2878 | SIGN(mp) = MP_ZPOS; | |
| 2879 | return; | |
| 2880 | } | |
| 2881 | ||
| 2882 | /* Shift all the significant figures over as needed */ | |
| 2883 | dp = DIGITS(mp); | |
| 2884 | for(ix = p; ix < USED(mp); ix++) | |
| 2885 | dp[ix - p] = dp[ix]; | |
| 2886 | ||
| 2887 | /* Fill the top digits with zeroes */ | |
| 2888 | ix -= p; | |
| 2889 | while(ix < USED(mp)) | |
| 2890 | dp[ix++] = 0; | |
| 2891 | ||
| 2892 | /* Strip off any leading zeroes */ | |
| 2893 | s_mp_clamp(mp); | |
| 2894 | ||
| 2895 | } /* end s_mp_rshd() */ | |
| 2896 | ||
| 2897 | /* }}} */ | |
| 2898 | ||
| 2899 | /* {{{ s_mp_div_2(mp) */ | |
| 2900 | ||
| 2901 | /* Divide by two -- take advantage of radix properties to do it fast */ | |
| 2902 | void s_mp_div_2(mp_int *mp) | |
| 2903 | { | |
| 2904 | s_mp_div_2d(mp, 1); | |
| 2905 | ||
| 2906 | } /* end s_mp_div_2() */ | |
| 2907 | ||
| 2908 | /* }}} */ | |
| 2909 | ||
| 2910 | /* {{{ s_mp_mul_2(mp) */ | |
| 2911 | ||
| 2912 | mp_err s_mp_mul_2(mp_int *mp) | |
| 2913 | { | |
| 2914 | int ix; | |
| 2915 | mp_digit kin = 0, kout, *dp = DIGITS(mp); | |
| 2916 | mp_err res; | |
| 2917 | ||
| 2918 | /* Shift digits leftward by 1 bit */ | |
| 2919 | for(ix = 0; ix < USED(mp); ix++) { | |
| 2920 | kout = (dp[ix] >> (DIGIT_BIT - 1)) & 1; | |
| 2921 | dp[ix] = (dp[ix] << 1) | kin; | |
| 2922 | ||
| 2923 | kin = kout; | |
| 2924 | } | |
| 2925 | ||
| 2926 | /* Deal with rollover from last digit */ | |
| 2927 | if(kin) { | |
| 2928 | if(ix >= ALLOC(mp)) { | |
| 2929 | if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY) | |
| 2930 | return res; | |
| 2931 | dp = DIGITS(mp); | |
| 2932 | } | |
| 2933 | ||
| 2934 | dp[ix] = kin; | |
| 2935 | USED(mp) += 1; | |
| 2936 | } | |
| 2937 | ||
| 2938 | return MP_OKAY; | |
| 2939 | ||
| 2940 | } /* end s_mp_mul_2() */ | |
| 2941 | ||
| 2942 | /* }}} */ | |
| 2943 | ||
| 2944 | /* {{{ s_mp_mod_2d(mp, d) */ | |
| 2945 | ||
| 2946 | /* | |
| 2947 | Remainder the integer by 2^d, where d is a number of bits. This | |
| 2948 | amounts to a bitwise AND of the value, and does not require the full | |
| 2949 | division code | |
| 2950 | */ | |
| 2951 | void s_mp_mod_2d(mp_int *mp, mp_digit d) | |
| 2952 | { | |
| 2953 | unsigned int ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT); | |
| 2954 | unsigned int ix; | |
| 2955 | mp_digit dmask, *dp = DIGITS(mp); | |
| 2956 | ||
| 2957 | if(ndig >= USED(mp)) | |
| 2958 | return; | |
| 2959 | ||
| 2960 | /* Flush all the bits above 2^d in its digit */ | |
| 2961 | dmask = (1 << nbit) - 1; | |
| 2962 | dp[ndig] &= dmask; | |
| 2963 | ||
| 2964 | /* Flush all digits above the one with 2^d in it */ | |
| 2965 | for(ix = ndig + 1; ix < USED(mp); ix++) | |
| 2966 | dp[ix] = 0; | |
| 2967 | ||
| 2968 | s_mp_clamp(mp); | |
| 2969 | ||
| 2970 | } /* end s_mp_mod_2d() */ | |
| 2971 | ||
| 2972 | /* }}} */ | |
| 2973 | ||
| 2974 | /* {{{ s_mp_mul_2d(mp, d) */ | |
| 2975 | ||
| 2976 | /* | |
| 2977 | Multiply by the integer 2^d, where d is a number of bits. This | |
| 2978 | amounts to a bitwise shift of the value, and does not require the | |
| 2979 | full multiplication code. | |
| 2980 | */ | |
| 2981 | mp_err s_mp_mul_2d(mp_int *mp, mp_digit d) | |
| 2982 | { | |
| 2983 | mp_err res; | |
| 2984 | mp_digit save, next, mask, *dp; | |
| 2985 | mp_size used; | |
| 2986 | int ix; | |
| 2987 | ||
| 2988 | if((res = s_mp_lshd(mp, d / DIGIT_BIT)) != MP_OKAY) | |
| 2989 | return res; | |
| 2990 | ||
| 2991 | dp = DIGITS(mp); used = USED(mp); | |
| 2992 | d %= DIGIT_BIT; | |
| 2993 | ||
| 2994 | mask = (1 << d) - 1; | |
| 2995 | ||
| 2996 | /* If the shift requires another digit, make sure we've got one to | |
| 2997 | work with */ | |
| 2998 | if((dp[used - 1] >> (DIGIT_BIT - d)) & mask) { | |
| 2999 | if((res = s_mp_grow(mp, used + 1)) != MP_OKAY) | |
| 3000 | return res; | |
| 3001 | dp = DIGITS(mp); | |
| 3002 | } | |
| 3003 | ||
| 3004 | /* Do the shifting... */ | |
| 3005 | save = 0; | |
| 3006 | for(ix = 0; ix < used; ix++) { | |
| 3007 | next = (dp[ix] >> (DIGIT_BIT - d)) & mask; | |
| 3008 | dp[ix] = (dp[ix] << d) | save; | |
| 3009 | save = next; | |
| 3010 | } | |
| 3011 | ||
| 3012 | /* If, at this point, we have a nonzero carryout into the next | |
| 3013 | digit, we'll increase the size by one digit, and store it... | |
| 3014 | */ | |
| 3015 | if(save) { | |
| 3016 | dp[used] = save; | |
| 3017 | USED(mp) += 1; | |
| 3018 | } | |
| 3019 | ||
| 3020 | s_mp_clamp(mp); | |
| 3021 | return MP_OKAY; | |
| 3022 | ||
| 3023 | } /* end s_mp_mul_2d() */ | |
| 3024 | ||
| 3025 | /* }}} */ | |
| 3026 | ||
| 3027 | /* {{{ s_mp_div_2d(mp, d) */ | |
| 3028 | ||
| 3029 | /* | |
| 3030 | Divide the integer by 2^d, where d is a number of bits. This | |
| 3031 | amounts to a bitwise shift of the value, and does not require the | |
| 3032 | full division code (used in Barrett reduction, see below) | |
| 3033 | */ | |
| 3034 | void s_mp_div_2d(mp_int *mp, mp_digit d) | |
| 3035 | { | |
| 3036 | int ix; | |
| 3037 | mp_digit save, next, mask, *dp = DIGITS(mp); | |
| 3038 | ||
| 3039 | s_mp_rshd(mp, d / DIGIT_BIT); | |
| 3040 | d %= DIGIT_BIT; | |
| 3041 | ||
| 3042 | mask = (1 << d) - 1; | |
| 3043 | ||
| 3044 | save = 0; | |
| 3045 | for(ix = USED(mp) - 1; ix >= 0; ix--) { | |
| 3046 | next = dp[ix] & mask; | |
| 3047 | dp[ix] = (dp[ix] >> d) | (save << (DIGIT_BIT - d)); | |
| 3048 | save = next; | |
| 3049 | } | |
| 3050 | ||
| 3051 | s_mp_clamp(mp); | |
| 3052 | ||
| 3053 | } /* end s_mp_div_2d() */ | |
| 3054 | ||
| 3055 | /* }}} */ | |
| 3056 | ||
| 3057 | /* {{{ s_mp_norm(a, b) */ | |
| 3058 | ||
| 3059 | /* | |
| 3060 | s_mp_norm(a, b) | |
| 3061 | ||
| 3062 | Normalize a and b for division, where b is the divisor. In order | |
| 3063 | that we might make good guesses for quotient digits, we want the | |
| 3064 | leading digit of b to be at least half the radix, which we | |
| 3065 | accomplish by multiplying a and b by a constant. This constant is | |
| 3066 | returned (so that it can be divided back out of the remainder at the | |
| 3067 | end of the division process). | |
| 3068 | ||
| 3069 | We multiply by the smallest power of 2 that gives us a leading digit | |
| 3070 | at least half the radix. By choosing a power of 2, we simplify the | |
| 3071 | multiplication and division steps to simple shifts. | |
| 3072 | */ | |
| 3073 | mp_digit s_mp_norm(mp_int *a, mp_int *b) | |
| 3074 | { | |
| 3075 | mp_digit t, d = 0; | |
| 3076 | ||
| 3077 | t = DIGIT(b, USED(b) - 1); | |
| 3078 | while(t < (RADIX / 2)) { | |
| 3079 | t <<= 1; | |
| 3080 | ++d; | |
| 3081 | } | |
| 3082 | ||
| 3083 | if(d != 0) { | |
| 3084 | s_mp_mul_2d(a, d); | |
| 3085 | s_mp_mul_2d(b, d); | |
| 3086 | } | |
| 3087 | ||
| 3088 | return d; | |
| 3089 | ||
| 3090 | } /* end s_mp_norm() */ | |
| 3091 | ||
| 3092 | /* }}} */ | |
| 3093 | ||
| 3094 | /* }}} */ | |
| 3095 | ||
| 3096 | /* {{{ Primitive digit arithmetic */ | |
| 3097 | ||
| 3098 | /* {{{ s_mp_add_d(mp, d) */ | |
| 3099 | ||
| 3100 | /* Add d to |mp| in place */ | |
| 3101 | mp_err s_mp_add_d(mp_int *mp, mp_digit d) /* unsigned digit addition */ | |
| 3102 | { | |
| 3103 | mp_word w, k = 0; | |
| 3104 | mp_size ix = 1, used = USED(mp); | |
| 3105 | mp_digit *dp = DIGITS(mp); | |
| 3106 | ||
| 3107 | w = dp[0] + d; | |
| 3108 | dp[0] = ACCUM(w); | |
| 3109 | k = CARRYOUT(w); | |
| 3110 | ||
| 3111 | while(ix < used && k) { | |
| 3112 | w = dp[ix] + k; | |
| 3113 | dp[ix] = ACCUM(w); | |
| 3114 | k = CARRYOUT(w); | |
| 3115 | ++ix; | |
| 3116 | } | |
| 3117 | ||
| 3118 | if(k != 0) { | |
| 3119 | mp_err res; | |
| 3120 | ||
| 3121 | if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY) | |
| 3122 | return res; | |
| 3123 | ||
| 3124 | DIGIT(mp, ix) = k; | |
| 3125 | } | |
| 3126 | ||
| 3127 | return MP_OKAY; | |
| 3128 | ||
| 3129 | } /* end s_mp_add_d() */ | |
| 3130 | ||
| 3131 | /* }}} */ | |
| 3132 | ||
| 3133 | /* {{{ s_mp_sub_d(mp, d) */ | |
| 3134 | ||
| 3135 | /* Subtract d from |mp| in place, assumes |mp| > d */ | |
| 3136 | mp_err s_mp_sub_d(mp_int *mp, mp_digit d) /* unsigned digit subtract */ | |
| 3137 | { | |
| 3138 | mp_word w, b = 0; | |
| 3139 | mp_size ix = 1, used = USED(mp); | |
| 3140 | mp_digit *dp = DIGITS(mp); | |
| 3141 | ||
| 3142 | /* Compute initial subtraction */ | |
| 3143 | w = (RADIX + dp[0]) - d; | |
| 3144 | b = CARRYOUT(w) ? 0 : 1; | |
| 3145 | dp[0] = ACCUM(w); | |
| 3146 | ||
| 3147 | /* Propagate borrows leftward */ | |
| 3148 | while(b && ix < used) { | |
| 3149 | w = (RADIX + dp[ix]) - b; | |
| 3150 | b = CARRYOUT(w) ? 0 : 1; | |
| 3151 | dp[ix] = ACCUM(w); | |
| 3152 | ++ix; | |
| 3153 | } | |
| 3154 | ||
| 3155 | /* Remove leading zeroes */ | |
| 3156 | s_mp_clamp(mp); | |
| 3157 | ||
| 3158 | /* If we have a borrow out, it's a violation of the input invariant */ | |
| 3159 | if(b) | |
| 3160 | return MP_RANGE; | |
| 3161 | else | |
| 3162 | return MP_OKAY; | |
| 3163 | ||
| 3164 | } /* end s_mp_sub_d() */ | |
| 3165 | ||
| 3166 | /* }}} */ | |
| 3167 | ||
| 3168 | /* {{{ s_mp_mul_d(a, d) */ | |
| 3169 | ||
| 3170 | /* Compute a = a * d, single digit multiplication */ | |
| 3171 | mp_err s_mp_mul_d(mp_int *a, mp_digit d) | |
| 3172 | { | |
| 3173 | mp_word w, k = 0; | |
| 3174 | mp_size ix, max; | |
| 3175 | mp_err res; | |
| 3176 | mp_digit *dp = DIGITS(a); | |
| 3177 | ||
| 3178 | /* | |
| 3179 | Single-digit multiplication will increase the precision of the | |
| 3180 | output by at most one digit. However, we can detect when this | |
| 3181 | will happen -- if the high-order digit of a, times d, gives a | |
| 3182 | two-digit result, then the precision of the result will increase; | |
| 3183 | otherwise it won't. We use this fact to avoid calling s_mp_pad() | |
| 3184 | unless absolutely necessary. | |
| 3185 | */ | |
| 3186 | max = USED(a); | |
| 3187 | w = dp[max - 1] * d; | |
| 3188 | if(CARRYOUT(w) != 0) { | |
| 3189 | if((res = s_mp_pad(a, max + 1)) != MP_OKAY) | |
| 3190 | return res; | |
| 3191 | dp = DIGITS(a); | |
| 3192 | } | |
| 3193 | ||
| 3194 | for(ix = 0; ix < max; ix++) { | |
| 3195 | w = (dp[ix] * d) + k; | |
| 3196 | dp[ix] = ACCUM(w); | |
| 3197 | k = CARRYOUT(w); | |
| 3198 | } | |
| 3199 | ||
| 3200 | /* If there is a precision increase, take care of it here; the above | |
| 3201 | test guarantees we have enough storage to do this safely. | |
| 3202 | */ | |
| 3203 | if(k) { | |
| 3204 | dp[max] = k; | |
| 3205 | USED(a) = max + 1; | |
| 3206 | } | |
| 3207 | ||
| 3208 | s_mp_clamp(a); | |
| 3209 | ||
| 3210 | return MP_OKAY; | |
| 3211 | ||
| 3212 | } /* end s_mp_mul_d() */ | |
| 3213 | ||
| 3214 | /* }}} */ | |
| 3215 | ||
| 3216 | /* {{{ s_mp_div_d(mp, d, r) */ | |
| 3217 | ||
| 3218 | /* | |
| 3219 | s_mp_div_d(mp, d, r) | |
| 3220 | ||
| 3221 | Compute the quotient mp = mp / d and remainder r = mp mod d, for a | |
| 3222 | single digit d. If r is null, the remainder will be discarded. | |
| 3223 | */ | |
| 3224 | ||
| 3225 | mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r) | |
| 3226 | { | |
| 3227 | mp_word w = 0, t; | |
| 3228 | mp_int quot; | |
| 3229 | mp_err res; | |
| 3230 | mp_digit *dp = DIGITS(mp), *qp; | |
| 3231 | int ix; | |
| 3232 | ||
| 3233 | if(d == 0) | |
| 3234 | return MP_RANGE; | |
| 3235 | ||
| 3236 | /* Make room for the quotient */ | |
| 3237 | if((res = mp_init_size(", USED(mp))) != MP_OKAY) | |
| 3238 | return res; | |
| 3239 | ||
| 3240 | USED(") = USED(mp); /* so clamping will work below */ | |
| 3241 | qp = DIGITS("); | |
| 3242 | ||
| 3243 | /* Divide without subtraction */ | |
| 3244 | for(ix = USED(mp) - 1; ix >= 0; ix--) { | |
| 3245 | w = (w << DIGIT_BIT) | dp[ix]; | |
| 3246 | ||
| 3247 | if(w >= d) { | |
| 3248 | t = w / d; | |
| 3249 | w = w % d; | |
| 3250 | } else { | |
| 3251 | t = 0; | |
| 3252 | } | |
| 3253 | ||
| 3254 | qp[ix] = t; | |
| 3255 | } | |
| 3256 | ||
| 3257 | /* Deliver the remainder, if desired */ | |
| 3258 | if(r) | |
| 3259 | *r = w; | |
| 3260 | ||
| 3261 | s_mp_clamp("); | |
| 3262 | mp_exch(", mp); | |
| 3263 | mp_clear("); | |
| 3264 | ||
| 3265 | return MP_OKAY; | |
| 3266 | ||
| 3267 | } /* end s_mp_div_d() */ | |
| 3268 | ||
| 3269 | /* }}} */ | |
| 3270 | ||
| 3271 | /* }}} */ | |
| 3272 | ||
| 3273 | /* {{{ Primitive full arithmetic */ | |
| 3274 | ||
| 3275 | /* {{{ s_mp_add(a, b) */ | |
| 3276 | ||
| 3277 | /* Compute a = |a| + |b| */ | |
| 3278 | mp_err s_mp_add(mp_int *a, mp_int *b) /* magnitude addition */ | |
| 3279 | { | |
| 3280 | mp_word w = 0; | |
| 3281 | mp_digit *pa, *pb; | |
| 3282 | mp_size ix, used = USED(b); | |
| 3283 | mp_err res; | |
| 3284 | ||
| 3285 | /* Make sure a has enough precision for the output value */ | |
| 3286 | if((used > USED(a)) && (res = s_mp_pad(a, used)) != MP_OKAY) | |
| 3287 | return res; | |
| 3288 | ||
| 3289 | /* | |
| 3290 | Add up all digits up to the precision of b. If b had initially | |
| 3291 | the same precision as a, or greater, we took care of it by the | |
| 3292 | padding step above, so there is no problem. If b had initially | |
| 3293 | less precision, we'll have to make sure the carry out is duly | |
| 3294 | propagated upward among the higher-order digits of the sum. | |
| 3295 | */ | |
| 3296 | pa = DIGITS(a); | |
| 3297 | pb = DIGITS(b); | |
| 3298 | for(ix = 0; ix < used; ++ix) { | |
| 3299 | w += *pa + *pb++; | |
| 3300 | *pa++ = ACCUM(w); | |
| 3301 | w = CARRYOUT(w); | |
| 3302 | } | |
| 3303 | ||
| 3304 | /* If we run out of 'b' digits before we're actually done, make | |
| 3305 | sure the carries get propagated upward... | |
| 3306 | */ | |
| 3307 | used = USED(a); | |
| 3308 | while(w && ix < used) { | |
| 3309 | w += *pa; | |
| 3310 | *pa++ = ACCUM(w); | |
| 3311 | w = CARRYOUT(w); | |
| 3312 | ++ix; | |
| 3313 | } | |
| 3314 | ||
| 3315 | /* If there's an overall carry out, increase precision and include | |
| 3316 | it. We could have done this initially, but why touch the memory | |
| 3317 | allocator unless we're sure we have to? | |
| 3318 | */ | |
| 3319 | if(w) { | |
| 3320 | if((res = s_mp_pad(a, used + 1)) != MP_OKAY) | |
| 3321 | return res; | |
| 3322 | ||
| 3323 | DIGIT(a, ix) = w; /* pa may not be valid after s_mp_pad() call */ | |
| 3324 | } | |
| 3325 | ||
| 3326 | return MP_OKAY; | |
| 3327 | ||
| 3328 | } /* end s_mp_add() */ | |
| 3329 | ||
| 3330 | /* }}} */ | |
| 3331 | ||
| 3332 | /* {{{ s_mp_sub(a, b) */ | |
| 3333 | ||
| 3334 | /* Compute a = |a| - |b|, assumes |a| >= |b| */ | |
| 3335 | mp_err s_mp_sub(mp_int *a, mp_int *b) /* magnitude subtract */ | |
| 3336 | { | |
| 3337 | mp_word w = 0; | |
| 3338 | mp_digit *pa, *pb; | |
| 3339 | mp_size ix, used = USED(b); | |
| 3340 | ||
| 3341 | /* | |
| 3342 | Subtract and propagate borrow. Up to the precision of b, this | |
| 3343 | accounts for the digits of b; after that, we just make sure the | |
| 3344 | carries get to the right place. This saves having to pad b out to | |
| 3345 | the precision of a just to make the loops work right... | |
| 3346 | */ | |
| 3347 | pa = DIGITS(a); | |
| 3348 | pb = DIGITS(b); | |
| 3349 | ||
| 3350 | for(ix = 0; ix < used; ++ix) { | |
| 3351 | w = (RADIX + *pa) - w - *pb++; | |
| 3352 | *pa++ = ACCUM(w); | |
| 3353 | w = CARRYOUT(w) ? 0 : 1; | |
| 3354 | } | |
| 3355 | ||
| 3356 | used = USED(a); | |
| 3357 | while(ix < used) { | |
| 3358 | w = RADIX + *pa - w; | |
| 3359 | *pa++ = ACCUM(w); | |
| 3360 | w = CARRYOUT(w) ? 0 : 1; | |
| 3361 | ++ix; | |
| 3362 | } | |
| 3363 | ||
| 3364 | /* Clobber any leading zeroes we created */ | |
| 3365 | s_mp_clamp(a); | |
| 3366 | ||
| 3367 | /* | |
| 3368 | If there was a borrow out, then |b| > |a| in violation | |
| 3369 | of our input invariant. We've already done the work, | |
| 3370 | but we'll at least complain about it... | |
| 3371 | */ | |
| 3372 | if(w) | |
| 3373 | return MP_RANGE; | |
| 3374 | else | |
| 3375 | return MP_OKAY; | |
| 3376 | ||
| 3377 | } /* end s_mp_sub() */ | |
| 3378 | ||
| 3379 | /* }}} */ | |
| 3380 | ||
| 3381 | /* {{{ s_mp_mul(a, b) */ | |
| 3382 | ||
| 3383 | /* Compute a = |a| * |b| */ | |
| 3384 | mp_err s_mp_mul(mp_int *a, mp_int *b) | |
| 3385 | { | |
| 3386 | mp_word w, k = 0; | |
| 3387 | mp_int tmp; | |
| 3388 | mp_err res; | |
| 3389 | mp_size ix, jx, ua = USED(a), ub = USED(b); | |
| 3390 | mp_digit *pa, *pb, *pt, *pbt; | |
| 3391 | ||
| 3392 | if((res = mp_init_size(&tmp, ua + ub)) != MP_OKAY) | |
| 3393 | return res; | |
| 3394 | ||
| 3395 | /* This has the effect of left-padding with zeroes... */ | |
| 3396 | USED(&tmp) = ua + ub; | |
| 3397 | ||
| 3398 | /* We're going to need the base value each iteration */ | |
| 3399 | pbt = DIGITS(&tmp); | |
| 3400 | ||
| 3401 | /* Outer loop: Digits of b */ | |
| 3402 | ||
| 3403 | pb = DIGITS(b); | |
| 3404 | for(ix = 0; ix < ub; ++ix, ++pb) { | |
| 3405 | if(*pb == 0) | |
| 3406 | continue; | |
| 3407 | ||
| 3408 | /* Inner product: Digits of a */ | |
| 3409 | pa = DIGITS(a); | |
| 3410 | for(jx = 0; jx < ua; ++jx, ++pa) { | |
| 3411 | pt = pbt + ix + jx; | |
| 3412 | w = *pb * *pa + k + *pt; | |
| 3413 | *pt = ACCUM(w); | |
| 3414 | k = CARRYOUT(w); | |
| 3415 | } | |
| 3416 | ||
| 3417 | pbt[ix + jx] = k; | |
| 3418 | k = 0; | |
| 3419 | } | |
| 3420 | ||
| 3421 | s_mp_clamp(&tmp); | |
| 3422 | s_mp_exch(&tmp, a); | |
| 3423 | ||
| 3424 | mp_clear(&tmp); | |
| 3425 | ||
| 3426 | return MP_OKAY; | |
| 3427 | ||
| 3428 | } /* end s_mp_mul() */ | |
| 3429 | ||
| 3430 | /* }}} */ | |
| 3431 | ||
| 3432 | /* {{{ s_mp_kmul(a, b, out, len) */ | |
| 3433 | ||
| 3434 | #if 0 | |
| 3435 | void s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len) | |
| 3436 | { | |
| 3437 | mp_word w, k = 0; | |
| 3438 | mp_size ix, jx; | |
| 3439 | mp_digit *pa, *pt; | |
| 3440 | ||
| 3441 | for(ix = 0; ix < len; ++ix, ++b) { | |
| 3442 | if(*b == 0) | |
| 3443 | continue; | |
| 3444 | ||
| 3445 | pa = a; | |
| 3446 | for(jx = 0; jx < len; ++jx, ++pa) { | |
| 3447 | pt = out + ix + jx; | |
| 3448 | w = *b * *pa + k + *pt; | |
| 3449 | *pt = ACCUM(w); | |
| 3450 | k = CARRYOUT(w); | |
| 3451 | } | |
| 3452 | ||
| 3453 | out[ix + jx] = k; | |
| 3454 | k = 0; | |
| 3455 | } | |
| 3456 | ||
| 3457 | } /* end s_mp_kmul() */ | |
| 3458 | #endif | |
| 3459 | ||
| 3460 | /* }}} */ | |
| 3461 | ||
| 3462 | /* {{{ s_mp_sqr(a) */ | |
| 3463 | ||
| 3464 | /* | |
| 3465 | Computes the square of a, in place. This can be done more | |
| 3466 | efficiently than a general multiplication, because many of the | |
| 3467 | computation steps are redundant when squaring. The inner product | |
| 3468 | step is a bit more complicated, but we save a fair number of | |
| 3469 | iterations of the multiplication loop. | |
| 3470 | */ | |
| 3471 | #if MP_SQUARE | |
| 3472 | mp_err s_mp_sqr(mp_int *a) | |
| 3473 | { | |
| 3474 | mp_word w, k = 0; | |
| 3475 | mp_int tmp; | |
| 3476 | mp_err res; | |
| 3477 | mp_size ix, jx, kx, used = USED(a); | |
| 3478 | mp_digit *pa1, *pa2, *pt, *pbt; | |
| 3479 | ||
| 3480 | if((res = mp_init_size(&tmp, 2 * used)) != MP_OKAY) | |
| 3481 | return res; | |
| 3482 | ||
| 3483 | /* Left-pad with zeroes */ | |
| 3484 | USED(&tmp) = 2 * used; | |
| 3485 | ||
| 3486 | /* We need the base value each time through the loop */ | |
| 3487 | pbt = DIGITS(&tmp); | |
| 3488 | ||
| 3489 | pa1 = DIGITS(a); | |
| 3490 | for(ix = 0; ix < used; ++ix, ++pa1) { | |
| 3491 | if(*pa1 == 0) | |
| 3492 | continue; | |
| 3493 | ||
| 3494 | w = DIGIT(&tmp, ix + ix) + (*pa1 * *pa1); | |
| 3495 | ||
| 3496 | pbt[ix + ix] = ACCUM(w); | |
| 3497 | k = CARRYOUT(w); | |
| 3498 | ||
| 3499 | /* | |
| 3500 | The inner product is computed as: | |
| 3501 | ||
| 3502 | (C, S) = t[i,j] + 2 a[i] a[j] + C | |
| 3503 | ||
| 3504 | This can overflow what can be represented in an mp_word, and | |
| 3505 | since C arithmetic does not provide any way to check for | |
| 3506 | overflow, we have to check explicitly for overflow conditions | |
| 3507 | before they happen. | |
| 3508 | */ | |
| 3509 | for(jx = ix + 1, pa2 = DIGITS(a) + jx; jx < used; ++jx, ++pa2) { | |
| 3510 | mp_word u = 0, v; | |
| 3511 | ||
| 3512 | /* Store this in a temporary to avoid indirections later */ | |
| 3513 | pt = pbt + ix + jx; | |
| 3514 | ||
| 3515 | /* Compute the multiplicative step */ | |
| 3516 | w = *pa1 * *pa2; | |
| 3517 | ||
| 3518 | /* If w is more than half MP_WORD_MAX, the doubling will | |
| 3519 | overflow, and we need to record a carry out into the next | |
| 3520 | word */ | |
| 3521 | u = (w >> (MP_WORD_BIT - 1)) & 1; | |
| 3522 | ||
| 3523 | /* Double what we've got, overflow will be ignored as defined | |
| 3524 | for C arithmetic (we've already noted if it is to occur) | |
| 3525 | */ | |
| 3526 | w *= 2; | |
| 3527 | ||
| 3528 | /* Compute the additive step */ | |
| 3529 | v = *pt + k; | |
| 3530 | ||
| 3531 | /* If we do not already have an overflow carry, check to see | |
| 3532 | if the addition will cause one, and set the carry out if so | |
| 3533 | */ | |
| 3534 | u |= ((MP_WORD_MAX - v) < w); | |
| 3535 | ||
| 3536 | /* Add in the rest, again ignoring overflow */ | |
| 3537 | w += v; | |
| 3538 | ||
| 3539 | /* Set the i,j digit of the output */ | |
| 3540 | *pt = ACCUM(w); | |
| 3541 | ||
| 3542 | /* Save carry information for the next iteration of the loop. | |
| 3543 | This is why k must be an mp_word, instead of an mp_digit */ | |
| 3544 | k = CARRYOUT(w) | (u << DIGIT_BIT); | |
| 3545 | ||
| 3546 | } /* for(jx ...) */ | |
| 3547 | ||
| 3548 | /* Set the last digit in the cycle and reset the carry */ | |
| 3549 | k = DIGIT(&tmp, ix + jx) + k; | |
| 3550 | pbt[ix + jx] = ACCUM(k); | |
| 3551 | k = CARRYOUT(k); | |
| 3552 | ||
| 3553 | /* If we are carrying out, propagate the carry to the next digit | |
| 3554 | in the output. This may cascade, so we have to be somewhat | |
| 3555 | circumspect -- but we will have enough precision in the output | |
| 3556 | that we won't overflow | |
| 3557 | */ | |
| 3558 | kx = 1; | |
| 3559 | while(k) { | |
| 3560 | k = pbt[ix + jx + kx] + 1; | |
| 3561 | pbt[ix + jx + kx] = ACCUM(k); | |
| 3562 | k = CARRYOUT(k); | |
| 3563 | ++kx; | |
| 3564 | } | |
| 3565 | } /* for(ix ...) */ | |
| 3566 | ||
| 3567 | s_mp_clamp(&tmp); | |
| 3568 | s_mp_exch(&tmp, a); | |
| 3569 | ||
| 3570 | mp_clear(&tmp); | |
| 3571 | ||
| 3572 | return MP_OKAY; | |
| 3573 | ||
| 3574 | } /* end s_mp_sqr() */ | |
| 3575 | #endif | |
| 3576 | ||
| 3577 | /* }}} */ | |
| 3578 | ||
| 3579 | /* {{{ s_mp_div(a, b) */ | |
| 3580 | ||
| 3581 | /* | |
| 3582 | s_mp_div(a, b) | |
| 3583 | ||
| 3584 | Compute a = a / b and b = a mod b. Assumes b > a. | |
| 3585 | */ | |
| 3586 | ||
| 3587 | mp_err s_mp_div(mp_int *a, mp_int *b) | |
| 3588 | { | |
| 3589 | mp_int quot, rem, t; | |
| 3590 | mp_word q; | |
| 3591 | mp_err res; | |
| 3592 | mp_digit d; | |
| 3593 | int ix; | |
| 3594 | ||
| 3595 | if(mp_cmp_z(b) == 0) | |
| 3596 | return MP_RANGE; | |
| 3597 | ||
| 3598 | /* Shortcut if b is power of two */ | |
| 3599 | if((ix = s_mp_ispow2(b)) >= 0) { | |
| 3600 | mp_copy(a, b); /* need this for remainder */ | |
| 3601 | s_mp_div_2d(a, (mp_digit)ix); | |
| 3602 | s_mp_mod_2d(b, (mp_digit)ix); | |
| 3603 | ||
| 3604 | return MP_OKAY; | |
| 3605 | } | |
| 3606 | ||
| 3607 | /* Allocate space to store the quotient */ | |
| 3608 | if((res = mp_init_size(", USED(a))) != MP_OKAY) | |
| 3609 | return res; | |
| 3610 | ||
| 3611 | /* A working temporary for division */ | |
| 3612 | if((res = mp_init_size(&t, USED(a))) != MP_OKAY) | |
| 3613 | goto T; | |
| 3614 | ||
| 3615 | /* Allocate space for the remainder */ | |
| 3616 | if((res = mp_init_size(&rem, USED(a))) != MP_OKAY) | |
| 3617 | goto REM; | |
| 3618 | ||
| 3619 | /* Normalize to optimize guessing */ | |
| 3620 | d = s_mp_norm(a, b); | |
| 3621 | ||
| 3622 | /* Perform the division itself...woo! */ | |
| 3623 | ix = USED(a) - 1; | |
| 3624 | ||
| 3625 | while(ix >= 0) { | |
| 3626 | /* Find a partial substring of a which is at least b */ | |
| 3627 | while(s_mp_cmp(&rem, b) < 0 && ix >= 0) { | |
| 3628 | if((res = s_mp_lshd(&rem, 1)) != MP_OKAY) | |
| 3629 | goto CLEANUP; | |
| 3630 | ||
| 3631 | if((res = s_mp_lshd(", 1)) != MP_OKAY) | |
| 3632 | goto CLEANUP; | |
| 3633 | ||
| 3634 | DIGIT(&rem, 0) = DIGIT(a, ix); | |
| 3635 | s_mp_clamp(&rem); | |
| 3636 | --ix; | |
| 3637 | } | |
| 3638 | ||
| 3639 | /* If we didn't find one, we're finished dividing */ | |
| 3640 | if(s_mp_cmp(&rem, b) < 0) | |
| 3641 | break; | |
| 3642 | ||
| 3643 | /* Compute a guess for the next quotient digit */ | |
| 3644 | q = DIGIT(&rem, USED(&rem) - 1); | |
| 3645 | if(q <= DIGIT(b, USED(b) - 1) && USED(&rem) > 1) | |
| 3646 | q = (q << DIGIT_BIT) | DIGIT(&rem, USED(&rem) - 2); | |
| 3647 | ||
| 3648 | q /= DIGIT(b, USED(b) - 1); | |
| 3649 | ||
| 3650 | /* The guess can be as much as RADIX + 1 */ | |
| 3651 | if(q >= RADIX) | |
| 3652 | q = RADIX - 1; | |
| 3653 | ||
| 3654 | /* See what that multiplies out to */ | |
| 3655 | mp_copy(b, &t); | |
| 3656 | if((res = s_mp_mul_d(&t, q)) != MP_OKAY) | |
| 3657 | goto CLEANUP; | |
| 3658 | ||
| 3659 | /* | |
| 3660 | If it's too big, back it off. We should not have to do this | |
| 3661 | more than once, or, in rare cases, twice. Knuth describes a | |
| 3662 | method by which this could be reduced to a maximum of once, but | |
| 3663 | I didn't implement that here. | |
| 3664 | */ | |
| 3665 | while(s_mp_cmp(&t, &rem) > 0) { | |
| 3666 | --q; | |
| 3667 | s_mp_sub(&t, b); | |
| 3668 | } | |
| 3669 | ||
| 3670 | /* At this point, q should be the right next digit */ | |
| 3671 | if((res = s_mp_sub(&rem, &t)) != MP_OKAY) | |
| 3672 | goto CLEANUP; | |
| 3673 | ||
| 3674 | /* | |
| 3675 | Include the digit in the quotient. We allocated enough memory | |
| 3676 | for any quotient we could ever possibly get, so we should not | |
| 3677 | have to check for failures here | |
| 3678 | */ | |
| 3679 | DIGIT(", 0) = q; | |
| 3680 | } | |
| 3681 | ||
| 3682 | /* Denormalize remainder */ | |
| 3683 | if(d != 0) | |
| 3684 | s_mp_div_2d(&rem, d); | |
| 3685 | ||
| 3686 | s_mp_clamp("); | |
| 3687 | s_mp_clamp(&rem); | |
| 3688 | ||
| 3689 | /* Copy quotient back to output */ | |
| 3690 | s_mp_exch(", a); | |
| 3691 | ||
| 3692 | /* Copy remainder back to output */ | |
| 3693 | s_mp_exch(&rem, b); | |
| 3694 | ||
| 3695 | CLEANUP: | |
| 3696 | mp_clear(&rem); | |
| 3697 | REM: | |
| 3698 | mp_clear(&t); | |
| 3699 | T: | |
| 3700 | mp_clear("); | |
| 3701 | ||
| 3702 | return res; | |
| 3703 | ||
| 3704 | } /* end s_mp_div() */ | |
| 3705 | ||
| 3706 | /* }}} */ | |
| 3707 | ||
| 3708 | /* {{{ s_mp_2expt(a, k) */ | |
| 3709 | ||
| 3710 | mp_err s_mp_2expt(mp_int *a, mp_digit k) | |
| 3711 | { | |
| 3712 | mp_err res; | |
| 3713 | mp_size dig, bit; | |
| 3714 | ||
| 3715 | dig = k / DIGIT_BIT; | |
| 3716 | bit = k % DIGIT_BIT; | |
| 3717 | ||
| 3718 | mp_zero(a); | |
| 3719 | if((res = s_mp_pad(a, dig + 1)) != MP_OKAY) | |
| 3720 | return res; | |
| 3721 | ||
| 3722 | DIGIT(a, dig) |= (1 << bit); | |
| 3723 | ||
| 3724 | return MP_OKAY; | |
| 3725 | ||
| 3726 | } /* end s_mp_2expt() */ | |
| 3727 | ||
| 3728 | /* }}} */ | |
| 3729 | ||
| 3730 | /* {{{ s_mp_reduce(x, m, mu) */ | |
| 3731 | ||
| 3732 | /* | |
| 3733 | Compute Barrett reduction, x (mod m), given a precomputed value for | |
| 3734 | mu = b^2k / m, where b = RADIX and k = #digits(m). This should be | |
| 3735 | faster than straight division, when many reductions by the same | |
| 3736 | value of m are required (such as in modular exponentiation). This | |
| 3737 | can nearly halve the time required to do modular exponentiation, | |
| 3738 | as compared to using the full integer divide to reduce. | |
| 3739 | ||
| 3740 | This algorithm was derived from the _Handbook of Applied | |
| 3741 | Cryptography_ by Menezes, Oorschot and VanStone, Ch. 14, | |
| 3742 | pp. 603-604. | |
| 3743 | */ | |
| 3744 | ||
| 3745 | mp_err s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu) | |
| 3746 | { | |
| 3747 | mp_int q; | |
| 3748 | mp_err res; | |
| 3749 | mp_size um = USED(m); | |
| 3750 | ||
| 3751 | if((res = mp_init_copy(&q, x)) != MP_OKAY) | |
| 3752 | return res; | |
| 3753 | ||
| 3754 | s_mp_rshd(&q, um - 1); /* q1 = x / b^(k-1) */ | |
| 3755 | s_mp_mul(&q, mu); /* q2 = q1 * mu */ | |
| 3756 | s_mp_rshd(&q, um + 1); /* q3 = q2 / b^(k+1) */ | |
| 3757 | ||
| 3758 | /* x = x mod b^(k+1), quick (no division) */ | |
| 3759 | s_mp_mod_2d(x, DIGIT_BIT * (um + 1)); | |
| 3760 | ||
| 3761 | /* q = q * m mod b^(k+1), quick (no division) */ | |
| 3762 | s_mp_mul(&q, m); | |
| 3763 | s_mp_mod_2d(&q, DIGIT_BIT * (um + 1)); | |
| 3764 | ||
| 3765 | /* x = x - q */ | |
| 3766 | if((res = mp_sub(x, &q, x)) != MP_OKAY) | |
| 3767 | goto CLEANUP; | |
| 3768 | ||
| 3769 | /* If x < 0, add b^(k+1) to it */ | |
| 3770 | if(mp_cmp_z(x) < 0) { | |
| 3771 | mp_set(&q, 1); | |
| 3772 | if((res = s_mp_lshd(&q, um + 1)) != MP_OKAY) | |
| 3773 | goto CLEANUP; | |
| 3774 | if((res = mp_add(x, &q, x)) != MP_OKAY) | |
| 3775 | goto CLEANUP; | |
| 3776 | } | |
| 3777 | ||
| 3778 | /* Back off if it's too big */ | |
| 3779 | while(mp_cmp(x, m) >= 0) { | |
| 3780 | if((res = s_mp_sub(x, m)) != MP_OKAY) | |
| 3781 | break; | |
| 3782 | } | |
| 3783 | ||
| 3784 | CLEANUP: | |
| 3785 | mp_clear(&q); | |
| 3786 | ||
| 3787 | return res; | |
| 3788 | ||
| 3789 | } /* end s_mp_reduce() */ | |
| 3790 | ||
| 3791 | /* }}} */ | |
| 3792 | ||
| 3793 | /* }}} */ | |
| 3794 | ||
| 3795 | /* {{{ Primitive comparisons */ | |
| 3796 | ||
| 3797 | /* {{{ s_mp_cmp(a, b) */ | |
| 3798 | ||
| 3799 | /* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b */ | |
| 3800 | int s_mp_cmp(mp_int *a, mp_int *b) | |
| 3801 | { | |
| 3802 | mp_size ua = USED(a), ub = USED(b); | |
| 3803 | ||
| 3804 | if(ua > ub) | |
| 3805 | return MP_GT; | |
| 3806 | else if(ua < ub) | |
| 3807 | return MP_LT; | |
| 3808 | else { | |
| 3809 | int ix = ua - 1; | |
| 3810 | mp_digit *ap = DIGITS(a) + ix, *bp = DIGITS(b) + ix; | |
| 3811 | ||
| 3812 | while(ix >= 0) { | |
| 3813 | if(*ap > *bp) | |
| 3814 | return MP_GT; | |
| 3815 | else if(*ap < *bp) | |
| 3816 | return MP_LT; | |
| 3817 | ||
| 3818 | --ap; --bp; --ix; | |
| 3819 | } | |
| 3820 | ||
| 3821 | return MP_EQ; | |
| 3822 | } | |
| 3823 | ||
| 3824 | } /* end s_mp_cmp() */ | |
| 3825 | ||
| 3826 | /* }}} */ | |
| 3827 | ||
| 3828 | /* {{{ s_mp_cmp_d(a, d) */ | |
| 3829 | ||
| 3830 | /* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d */ | |
| 3831 | int s_mp_cmp_d(mp_int *a, mp_digit d) | |
| 3832 | { | |
| 3833 | mp_size ua = USED(a); | |
| 3834 | mp_digit *ap = DIGITS(a); | |
| 3835 | ||
| 3836 | if(ua > 1) | |
| 3837 | return MP_GT; | |
| 3838 | ||
| 3839 | if(*ap < d) | |
| 3840 | return MP_LT; | |
| 3841 | else if(*ap > d) | |
| 3842 | return MP_GT; | |
| 3843 | else | |
| 3844 | return MP_EQ; | |
| 3845 | ||
| 3846 | } /* end s_mp_cmp_d() */ | |
| 3847 | ||
| 3848 | /* }}} */ | |
| 3849 | ||
| 3850 | /* {{{ s_mp_ispow2(v) */ | |
| 3851 | ||
| 3852 | /* | |
| 3853 | Returns -1 if the value is not a power of two; otherwise, it returns | |
| 3854 | k such that v = 2^k, i.e. lg(v). | |
| 3855 | */ | |
| 3856 | int s_mp_ispow2(mp_int *v) | |
| 3857 | { | |
| 3858 | mp_digit d, *dp; | |
| 3859 | mp_size uv = USED(v); | |
| 3860 | int extra = 0, ix; | |
| 3861 | ||
| 3862 | d = DIGIT(v, uv - 1); /* most significant digit of v */ | |
| 3863 | ||
| 3864 | while(d && ((d & 1) == 0)) { | |
| 3865 | d >>= 1; | |
| 3866 | ++extra; | |
| 3867 | } | |
| 3868 | ||
| 3869 | if(d == 1) { | |
| 3870 | ix = uv - 2; | |
| 3871 | dp = DIGITS(v) + ix; | |
| 3872 | ||
| 3873 | while(ix >= 0) { | |
| 3874 | if(*dp) | |
| 3875 | return -1; /* not a power of two */ | |
| 3876 | ||
| 3877 | --dp; --ix; | |
| 3878 | } | |
| 3879 | ||
| 3880 | return ((uv - 1) * DIGIT_BIT) + extra; | |
| 3881 | } | |
| 3882 | ||
| 3883 | return -1; | |
| 3884 | ||
| 3885 | } /* end s_mp_ispow2() */ | |
| 3886 | ||
| 3887 | /* }}} */ | |
| 3888 | ||
| 3889 | /* {{{ s_mp_ispow2d(d) */ | |
| 3890 | ||
| 3891 | int s_mp_ispow2d(mp_digit d) | |
| 3892 | { | |
| 3893 | int pow = 0; | |
| 3894 | ||
| 3895 | while((d & 1) == 0) { | |
| 3896 | ++pow; d >>= 1; | |
| 3897 | } | |
| 3898 | ||
| 3899 | if(d == 1) | |
| 3900 | return pow; | |
| 3901 | ||
| 3902 | return -1; | |
| 3903 | ||
| 3904 | } /* end s_mp_ispow2d() */ | |
| 3905 | ||
| 3906 | /* }}} */ | |
| 3907 | ||
| 3908 | /* }}} */ | |
| 3909 | ||
| 3910 | /* {{{ Primitive I/O helpers */ | |
| 3911 | ||
| 3912 | /* {{{ s_mp_tovalue(ch, r) */ | |
| 3913 | ||
| 3914 | /* | |
| 3915 | Convert the given character to its digit value, in the given radix. | |
| 3916 | If the given character is not understood in the given radix, -1 is | |
| 3917 | returned. Otherwise the digit's numeric value is returned. | |
| 3918 | ||
| 3919 | The results will be odd if you use a radix < 2 or > 62, you are | |
| 3920 | expected to know what you're up to. | |
| 3921 | */ | |
| 3922 | int s_mp_tovalue(char ch, int r) | |
| 3923 | { | |
| 3924 | int val, xch; | |
| 3925 | ||
| 3926 | if(r > 36) | |
| 3927 | xch = ch; | |
| 3928 | else | |
| 3929 | xch = toupper(ch); | |
| 3930 | ||
| 3931 | if(isdigit(xch)) | |
| 3932 | val = xch - '0'; | |
| 3933 | else if(isupper(xch)) | |
| 3934 | val = xch - 'A' + 10; | |
| 3935 | else if(islower(xch)) | |
| 3936 | val = xch - 'a' + 36; | |
| 3937 | else if(xch == '+') | |
| 3938 | val = 62; | |
| 3939 | else if(xch == '/') | |
| 3940 | val = 63; | |
| 3941 | else | |
| 3942 | return -1; | |
| 3943 | ||
| 3944 | if(val < 0 || val >= r) | |
| 3945 | return -1; | |
| 3946 | ||
| 3947 | return val; | |
| 3948 | ||
| 3949 | } /* end s_mp_tovalue() */ | |
| 3950 | ||
| 3951 | /* }}} */ | |
| 3952 | ||
| 3953 | /* {{{ s_mp_todigit(val, r, low) */ | |
| 3954 | ||
| 3955 | /* | |
| 3956 | Convert val to a radix-r digit, if possible. If val is out of range | |
| 3957 | for r, returns zero. Otherwise, returns an ASCII character denoting | |
| 3958 | the value in the given radix. | |
| 3959 | ||
| 3960 | The results may be odd if you use a radix < 2 or > 64, you are | |
| 3961 | expected to know what you're doing. | |
| 3962 | */ | |
| 3963 | ||
| 3964 | char s_mp_todigit(int val, int r, int low) | |
| 3965 | { | |
| 3966 | char ch; | |
| 3967 | ||
| 3968 | if(val < 0 || val >= r) | |
| 3969 | return 0; | |
| 3970 | ||
| 3971 | ch = s_dmap_1[val]; | |
| 3972 | ||
| 3973 | if(r <= 36 && low) | |
| 3974 | ch = tolower(ch); | |
| 3975 | ||
| 3976 | return ch; | |
| 3977 | ||
| 3978 | } /* end s_mp_todigit() */ | |
| 3979 | ||
| 3980 | /* }}} */ | |
| 3981 | ||
| 3982 | /* {{{ s_mp_outlen(bits, radix) */ | |
| 3983 | ||
| 3984 | /* | |
| 3985 | Return an estimate for how long a string is needed to hold a radix | |
| 3986 | r representation of a number with 'bits' significant bits. | |
| 3987 | ||
| 3988 | Does not include space for a sign or a NUL terminator. | |
| 3989 | */ | |
| 3990 | int s_mp_outlen(int bits, int r) | |
| 3991 | { | |
| 3992 | return (int)((double)bits * LOG_V_2(r) + 0.5); | |
| 3993 | ||
| 3994 | } /* end s_mp_outlen() */ | |
| 3995 | ||
| 3996 | /* }}} */ | |
| 3997 | ||
| 3998 | /* }}} */ | |
| 3999 | ||
| 4000 | /*------------------------------------------------------------------------*/ | |
| 4001 | /* HERE THERE BE DRAGONS */ |