Sat, 22 Nov 2014 23:34:30 +0100
Fix build for platforms without AF_LOCAL definition
/* $Id$ */ /* * (C) Copyright 2007 Wojtek Kaniewski <wojtekka@irc.pl> * * Public domain SHA-1 implementation by Steve Reid <steve@edmweb.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License Version * 2.1 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, * USA. */ /** * \file sha1.c * * \brief Funkcje wyznaczania skrótu SHA1 */ #include <errno.h> #include <string.h> #include "libgadu.h" #include "internal.h" #include "fileio.h" #include "config.h" /** \cond ignore */ #ifdef GG_CONFIG_HAVE_OPENSSL #include <openssl/sha.h> #elif defined(GG_CONFIG_HAVE_GNUTLS) #include <gnutls/gnutls.h> #include <gnutls/crypto.h> #define SHA_CTX gnutls_hash_hd_t #define SHA1_Init(ctx) (gnutls_hash_init((ctx), GNUTLS_DIG_SHA1) == 0 ? 1 : 0) #define SHA1_Update(ctx, ptr, len) (gnutls_hash(*(ctx), (ptr), (len)) == 0 ? 1 : 0) #define SHA1_Final(digest, ctx) (gnutls_hash_deinit(*(ctx), (digest)), 1) #else /* SHA-1 in C By Steve Reid <steve@edmweb.com> 100% Public Domain Modified by Wojtek Kaniewski <wojtekka@toxygen.net> for compatibility with libgadu and OpenSSL API. Test Vectors (from FIPS PUB 180-1) "abc" A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1 A million repetitions of "a" 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F */ /* #define LITTLE_ENDIAN * This should be #define'd if true. */ /* #define SHA1HANDSOFF * Copies data before messing with it. */ typedef struct { uint32_t state[5]; uint32_t count[2]; unsigned char buffer[64]; } SHA_CTX; static void SHA1_Transform(uint32_t state[5], const unsigned char buffer[64]); static int SHA1_Init(SHA_CTX* context); static int SHA1_Update(SHA_CTX* context, const unsigned char* data, unsigned int len); static int SHA1_Final(unsigned char digest[20], SHA_CTX* context); #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) /* blk0() and blk() perform the initial expand. */ /* I got the idea of expanding during the round function from SSLeay */ #ifndef GG_CONFIG_BIGENDIAN #define blk0(i) (block.l[i] = (rol(block.l[i], 24) & 0xFF00FF00) \ |(rol(block.l[i], 8) & 0x00FF00FF)) #else #define blk0(i) block.l[i] #endif #define blk(i) (block.l[i&15] = rol(block.l[(i+13)&15]^block.l[(i+8)&15] \ ^block.l[(i+2)&15]^block.l[i&15], 1)) /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ /* style:comma:start-ignore */ #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); /* style:comma:end-ignore */ /* Hash a single 512-bit block. This is the core of the algorithm. */ static void SHA1_Transform(uint32_t state[5], const unsigned char buffer[64]) { uint32_t a, b, c, d, e; typedef union { unsigned char c[64]; uint32_t l[16]; } CHAR64LONG16; CHAR64LONG16 block; memcpy(&block, buffer, sizeof(block)); /* Copy context->state[] to working vars */ a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; /* 4 rounds of 20 operations each. Loop unrolled. */ /* style:comma:start-ignore */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); /* style:comma:end-ignore */ /* Add the working vars back into context.state[] */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; /* Wipe variables */ a = b = c = d = e = 0; } /* SHA1_Init - Initialize new context */ static int SHA1_Init(SHA_CTX* context) { /* SHA1 initialization constants */ context->state[0] = 0x67452301; context->state[1] = 0xEFCDAB89; context->state[2] = 0x98BADCFE; context->state[3] = 0x10325476; context->state[4] = 0xC3D2E1F0; context->count[0] = context->count[1] = 0; return 1; } /* Run your data through this. */ static int SHA1_Update(SHA_CTX* context, const unsigned char* data, unsigned int len) { unsigned int i, j; j = (context->count[0] >> 3) & 63; if ((context->count[0] += len << 3) < (len << 3)) context->count[1]++; context->count[1] += (len >> 29); if ((j + len) > 63) { memcpy(&context->buffer[j], data, (i = 64-j)); SHA1_Transform(context->state, context->buffer); for ( ; i + 63 < len; i += 64) { SHA1_Transform(context->state, &data[i]); } j = 0; } else i = 0; memcpy(&context->buffer[j], &data[i], len - i); return 1; } /* Add padding and return the message digest. */ static int SHA1_Final(unsigned char digest[20], SHA_CTX* context) { uint32_t i, j; unsigned char finalcount[8]; for (i = 0; i < 8; i++) { finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)] >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */ } SHA1_Update(context, (const unsigned char *)"\200", 1); while ((context->count[0] & 504) != 448) { SHA1_Update(context, (const unsigned char *)"\0", 1); } SHA1_Update(context, finalcount, 8); /* Should cause a SHA1_Transform() */ for (i = 0; i < 20; i++) { digest[i] = (unsigned char) ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); } /* Wipe variables */ i = j = 0; memset(context->buffer, 0, 64); memset(context->state, 0, 20); memset(context->count, 0, 8); memset(&finalcount, 0, 8); #ifdef SHA1HANDSOFF /* make SHA1_Transform overwrite it's own static vars */ SHA1_Transform(context->state, context->buffer); #endif return 1; } #endif /* GG_CONFIG_HAVE_OPENSSL */ /** \endcond */ /** \cond internal */ /** * \internal Liczy skrót SHA1 z ziarna i hasła. * * \param password Hasło * \param seed Ziarno * \param result Bufor na wynik funkcji skrótu (20 bajtów) * * \return 0 lub -1 */ int gg_login_hash_sha1_2(const char *password, uint32_t seed, uint8_t *result) { SHA_CTX ctx; if (!SHA1_Init(&ctx)) return -1; if (!SHA1_Update(&ctx, (const unsigned char*) password, strlen(password))) goto fail; seed = gg_fix32(seed); if (!SHA1_Update(&ctx, (uint8_t*) &seed, 4)) goto fail; if (!SHA1_Final(result, &ctx)) return -1; return 0; fail: /* Zwolnij zasoby. Tylko GnuTLS przyjęłoby NULL zamiast result, więc przekaż result. */ (void)SHA1_Final(result, &ctx); return -1; } /** * \internal Liczy skrót SHA1 z fragmentu pliku. * * \param fd Deskryptor pliku * \param ctx Kontekst SHA-1 * \param pos Położenie fragmentu pliku * \param len Długość fragmentu pliku * * \return 0 lub -1 */ static int gg_file_hash_sha1_part(int fd, SHA_CTX *ctx, off_t pos, size_t len) { unsigned char buf[4096]; size_t chunk_len; int res = 0; while (len > 0) { if (lseek(fd, pos, SEEK_SET) == (off_t) -1) { res = -1; break; } chunk_len = len; if (chunk_len > sizeof(buf)) chunk_len = sizeof(buf); res = read(fd, buf, chunk_len); if (res == -1 && errno != EINTR) break; if (res != -1) { if (!SHA1_Update(ctx, buf, res)) { res = -1; break; } pos += res; len -= res; } } return res; } /** * \internal Liczy skrót SHA1 z pliku. * * Dla plików poniżej 10MB liczony jest skrót z całego pliku, dla plików * powyżej 10MB liczy się 9 jednomegabajtowych fragmentów. * * \param fd Deskryptor pliku * \param result Bufor na wynik funkcji skrótu (20 bajtów) * * \return 0 lub -1 */ int gg_file_hash_sha1(int fd, uint8_t *result) { SHA_CTX ctx; off_t pos, len; int res; const size_t part_len = 1048576; if ((pos = lseek(fd, 0, SEEK_CUR)) == (off_t) -1) return -1; if ((len = lseek(fd, 0, SEEK_END)) == (off_t) -1) return -1; if (lseek(fd, 0, SEEK_SET) == (off_t) -1) return -1; if (!SHA1_Init(&ctx)) return -1; if (len <= (off_t)part_len * 10) { res = gg_file_hash_sha1_part(fd, &ctx, 0, len); } else { unsigned int i; for (i = 0; i < 9; i++) { off_t part_pos = (len - part_len) / 9 * i; res = gg_file_hash_sha1_part(fd, &ctx, part_pos, part_len); if (res == -1) break; } } if (!SHA1_Final(result, &ctx)) return -1; if (res == -1) return -1; if (lseek(fd, pos, SEEK_SET) == (off_t) -1) return -1; return 0; } /** \endcond */