| 1 /* |
|
| 2 mpi.c |
|
| 3 |
|
| 4 by Michael J. Fromberger <http://www.dartmouth.edu/~sting/> |
|
| 5 Copyright (C) 1998 Michael J. Fromberger, All Rights Reserved |
|
| 6 |
|
| 7 Arbitrary precision integer arithmetic library |
|
| 8 |
|
| 9 $Id: mpi.c 14563 2005-11-29 23:31:40Z taliesein $ |
|
| 10 */ |
|
| 11 |
|
| 12 #include "mpi.h" |
|
| 13 #include <stdlib.h> |
|
| 14 #include <string.h> |
|
| 15 #include <ctype.h> |
|
| 16 |
|
| 17 #if MP_DEBUG |
|
| 18 #include <stdio.h> |
|
| 19 |
|
| 20 #define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);} |
|
| 21 #else |
|
| 22 #define DIAG(T,V) |
|
| 23 #endif |
|
| 24 |
|
| 25 /* |
|
| 26 If MP_LOGTAB is not defined, use the math library to compute the |
|
| 27 logarithms on the fly. Otherwise, use the static table below. |
|
| 28 Pick which works best for your system. |
|
| 29 */ |
|
| 30 #if MP_LOGTAB |
|
| 31 |
|
| 32 /* {{{ s_logv_2[] - log table for 2 in various bases */ |
|
| 33 |
|
| 34 /* |
|
| 35 A table of the logs of 2 for various bases (the 0 and 1 entries of |
|
| 36 this table are meaningless and should not be referenced). |
|
| 37 |
|
| 38 This table is used to compute output lengths for the mp_toradix() |
|
| 39 function. Since a number n in radix r takes up about log_r(n) |
|
| 40 digits, we estimate the output size by taking the least integer |
|
| 41 greater than log_r(n), where: |
|
| 42 |
|
| 43 log_r(n) = log_2(n) * log_r(2) |
|
| 44 |
|
| 45 This table, therefore, is a table of log_r(2) for 2 <= r <= 36, |
|
| 46 which are the output bases supported. |
|
| 47 */ |
|
| 48 |
|
| 49 #include "logtab.h" |
|
| 50 |
|
| 51 /* }}} */ |
|
| 52 #define LOG_V_2(R) s_logv_2[(R)] |
|
| 53 |
|
| 54 #else |
|
| 55 |
|
| 56 #include <math.h> |
|
| 57 #define LOG_V_2(R) (log(2.0)/log(R)) |
|
| 58 |
|
| 59 #endif |
|
| 60 |
|
| 61 /* Default precision for newly created mp_int's */ |
|
| 62 static unsigned int s_mp_defprec = MP_DEFPREC; |
|
| 63 |
|
| 64 /* {{{ Digit arithmetic macros */ |
|
| 65 |
|
| 66 /* |
|
| 67 When adding and multiplying digits, the results can be larger than |
|
| 68 can be contained in an mp_digit. Thus, an mp_word is used. These |
|
| 69 macros mask off the upper and lower digits of the mp_word (the |
|
| 70 mp_word may be more than 2 mp_digits wide, but we only concern |
|
| 71 ourselves with the low-order 2 mp_digits) |
|
| 72 |
|
| 73 If your mp_word DOES have more than 2 mp_digits, you need to |
|
| 74 uncomment the first line, and comment out the second. |
|
| 75 */ |
|
| 76 |
|
| 77 /* #define CARRYOUT(W) (((W)>>DIGIT_BIT)&MP_DIGIT_MAX) */ |
|
| 78 #define CARRYOUT(W) ((W)>>DIGIT_BIT) |
|
| 79 #define ACCUM(W) ((W)&MP_DIGIT_MAX) |
|
| 80 |
|
| 81 /* }}} */ |
|
| 82 |
|
| 83 /* {{{ Comparison constants */ |
|
| 84 |
|
| 85 #define MP_LT -1 |
|
| 86 #define MP_EQ 0 |
|
| 87 #define MP_GT 1 |
|
| 88 |
|
| 89 /* }}} */ |
|
| 90 |
|
| 91 /* {{{ Constant strings */ |
|
| 92 |
|
| 93 /* Constant strings returned by mp_strerror() */ |
|
| 94 static const char *mp_err_string[] = { |
|
| 95 "unknown result code", /* say what? */ |
|
| 96 "boolean true", /* MP_OKAY, MP_YES */ |
|
| 97 "boolean false", /* MP_NO */ |
|
| 98 "out of memory", /* MP_MEM */ |
|
| 99 "argument out of range", /* MP_RANGE */ |
|
| 100 "invalid input parameter", /* MP_BADARG */ |
|
| 101 "result is undefined" /* MP_UNDEF */ |
|
| 102 }; |
|
| 103 |
|
| 104 /* Value to digit maps for radix conversion */ |
|
| 105 |
|
| 106 /* s_dmap_1 - standard digits and letters */ |
|
| 107 static const char *s_dmap_1 = |
|
| 108 "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; |
|
| 109 |
|
| 110 #if 0 |
|
| 111 /* s_dmap_2 - base64 ordering for digits */ |
|
| 112 static const char *s_dmap_2 = |
|
| 113 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; |
|
| 114 #endif |
|
| 115 |
|
| 116 /* }}} */ |
|
| 117 |
|
| 118 /* {{{ Static function declarations */ |
|
| 119 |
|
| 120 /* |
|
| 121 If MP_MACRO is false, these will be defined as actual functions; |
|
| 122 otherwise, suitable macro definitions will be used. This works |
|
| 123 around the fact that ANSI C89 doesn't support an 'inline' keyword |
|
| 124 (although I hear C9x will ... about bloody time). At present, the |
|
| 125 macro definitions are identical to the function bodies, but they'll |
|
| 126 expand in place, instead of generating a function call. |
|
| 127 |
|
| 128 I chose these particular functions to be made into macros because |
|
| 129 some profiling showed they are called a lot on a typical workload, |
|
| 130 and yet they are primarily housekeeping. |
|
| 131 */ |
|
| 132 #if MP_MACRO == 0 |
|
| 133 void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */ |
|
| 134 void s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count); /* copy */ |
|
| 135 void *s_mp_alloc(size_t nb, size_t ni); /* general allocator */ |
|
| 136 void s_mp_free(void *ptr); /* general free function */ |
|
| 137 #else |
|
| 138 |
|
| 139 /* Even if these are defined as macros, we need to respect the settings |
|
| 140 of the MP_MEMSET and MP_MEMCPY configuration options... |
|
| 141 */ |
|
| 142 #if MP_MEMSET == 0 |
|
| 143 #define s_mp_setz(dp, count) \ |
|
| 144 {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;} |
|
| 145 #else |
|
| 146 #define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit)) |
|
| 147 #endif /* MP_MEMSET */ |
|
| 148 |
|
| 149 #if MP_MEMCPY == 0 |
|
| 150 #define s_mp_copy(sp, dp, count) \ |
|
| 151 {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];} |
|
| 152 #else |
|
| 153 #define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit)) |
|
| 154 #endif /* MP_MEMCPY */ |
|
| 155 |
|
| 156 #define s_mp_alloc(nb, ni) calloc(nb, ni) |
|
| 157 #define s_mp_free(ptr) {if(ptr) free(ptr);} |
|
| 158 #endif /* MP_MACRO */ |
|
| 159 |
|
| 160 mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */ |
|
| 161 mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */ |
|
| 162 |
|
| 163 void s_mp_clamp(mp_int *mp); /* clip leading zeroes */ |
|
| 164 |
|
| 165 void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */ |
|
| 166 |
|
| 167 mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */ |
|
| 168 void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */ |
|
| 169 void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */ |
|
| 170 void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */ |
|
| 171 mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place*/ |
|
| 172 void s_mp_div_2(mp_int *mp); /* divide by 2 in place */ |
|
| 173 mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */ |
|
| 174 mp_digit s_mp_norm(mp_int *a, mp_int *b); /* normalize for division */ |
|
| 175 mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */ |
|
| 176 mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */ |
|
| 177 mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */ |
|
| 178 mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r); |
|
| 179 /* unsigned digit divide */ |
|
| 180 mp_err s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu); |
|
| 181 /* Barrett reduction */ |
|
| 182 mp_err s_mp_add(mp_int *a, mp_int *b); /* magnitude addition */ |
|
| 183 mp_err s_mp_sub(mp_int *a, mp_int *b); /* magnitude subtract */ |
|
| 184 mp_err s_mp_mul(mp_int *a, mp_int *b); /* magnitude multiply */ |
|
| 185 #if 0 |
|
| 186 void s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len); |
|
| 187 /* multiply buffers in place */ |
|
| 188 #endif |
|
| 189 #if MP_SQUARE |
|
| 190 mp_err s_mp_sqr(mp_int *a); /* magnitude square */ |
|
| 191 #else |
|
| 192 #define s_mp_sqr(a) s_mp_mul(a, a) |
|
| 193 #endif |
|
| 194 mp_err s_mp_div(mp_int *a, mp_int *b); /* magnitude divide */ |
|
| 195 mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */ |
|
| 196 int s_mp_cmp(mp_int *a, mp_int *b); /* magnitude comparison */ |
|
| 197 int s_mp_cmp_d(mp_int *a, mp_digit d); /* magnitude digit compare */ |
|
| 198 int s_mp_ispow2(mp_int *v); /* is v a power of 2? */ |
|
| 199 int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */ |
|
| 200 |
|
| 201 int s_mp_tovalue(char ch, int r); /* convert ch to value */ |
|
| 202 char s_mp_todigit(int val, int r, int low); /* convert val to digit */ |
|
| 203 int s_mp_outlen(int bits, int r); /* output length in bytes */ |
|
| 204 |
|
| 205 /* }}} */ |
|
| 206 |
|
| 207 /* {{{ Default precision manipulation */ |
|
| 208 |
|
| 209 unsigned int mp_get_prec(void) |
|
| 210 { |
|
| 211 return s_mp_defprec; |
|
| 212 |
|
| 213 } /* end mp_get_prec() */ |
|
| 214 |
|
| 215 void mp_set_prec(unsigned int prec) |
|
| 216 { |
|
| 217 if(prec == 0) |
|
| 218 s_mp_defprec = MP_DEFPREC; |
|
| 219 else |
|
| 220 s_mp_defprec = prec; |
|
| 221 |
|
| 222 } /* end mp_set_prec() */ |
|
| 223 |
|
| 224 /* }}} */ |
|
| 225 |
|
| 226 /*------------------------------------------------------------------------*/ |
|
| 227 /* {{{ mp_init(mp) */ |
|
| 228 |
|
| 229 /* |
|
| 230 mp_init(mp) |
|
| 231 |
|
| 232 Initialize a new zero-valued mp_int. Returns MP_OKAY if successful, |
|
| 233 MP_MEM if memory could not be allocated for the structure. |
|
| 234 */ |
|
| 235 |
|
| 236 mp_err mp_init(mp_int *mp) |
|
| 237 { |
|
| 238 return mp_init_size(mp, s_mp_defprec); |
|
| 239 |
|
| 240 } /* end mp_init() */ |
|
| 241 |
|
| 242 /* }}} */ |
|
| 243 |
|
| 244 /* {{{ mp_init_array(mp[], count) */ |
|
| 245 |
|
| 246 mp_err mp_init_array(mp_int mp[], int count) |
|
| 247 { |
|
| 248 mp_err res; |
|
| 249 int pos; |
|
| 250 |
|
| 251 ARGCHK(mp !=NULL && count > 0, MP_BADARG); |
|
| 252 |
|
| 253 for(pos = 0; pos < count; ++pos) { |
|
| 254 if((res = mp_init(&mp[pos])) != MP_OKAY) |
|
| 255 goto CLEANUP; |
|
| 256 } |
|
| 257 |
|
| 258 return MP_OKAY; |
|
| 259 |
|
| 260 CLEANUP: |
|
| 261 while(--pos >= 0) |
|
| 262 mp_clear(&mp[pos]); |
|
| 263 |
|
| 264 return res; |
|
| 265 |
|
| 266 } /* end mp_init_array() */ |
|
| 267 |
|
| 268 /* }}} */ |
|
| 269 |
|
| 270 /* {{{ mp_init_size(mp, prec) */ |
|
| 271 |
|
| 272 /* |
|
| 273 mp_init_size(mp, prec) |
|
| 274 |
|
| 275 Initialize a new zero-valued mp_int with at least the given |
|
| 276 precision; returns MP_OKAY if successful, or MP_MEM if memory could |
|
| 277 not be allocated for the structure. |
|
| 278 */ |
|
| 279 |
|
| 280 mp_err mp_init_size(mp_int *mp, mp_size prec) |
|
| 281 { |
|
| 282 ARGCHK(mp != NULL && prec > 0, MP_BADARG); |
|
| 283 |
|
| 284 if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit))) == NULL) |
|
| 285 return MP_MEM; |
|
| 286 |
|
| 287 SIGN(mp) = MP_ZPOS; |
|
| 288 USED(mp) = 1; |
|
| 289 ALLOC(mp) = prec; |
|
| 290 |
|
| 291 return MP_OKAY; |
|
| 292 |
|
| 293 } /* end mp_init_size() */ |
|
| 294 |
|
| 295 /* }}} */ |
|
| 296 |
|
| 297 /* {{{ mp_init_copy(mp, from) */ |
|
| 298 |
|
| 299 /* |
|
| 300 mp_init_copy(mp, from) |
|
| 301 |
|
| 302 Initialize mp as an exact copy of from. Returns MP_OKAY if |
|
| 303 successful, MP_MEM if memory could not be allocated for the new |
|
| 304 structure. |
|
| 305 */ |
|
| 306 |
|
| 307 mp_err mp_init_copy(mp_int *mp, mp_int *from) |
|
| 308 { |
|
| 309 ARGCHK(mp != NULL && from != NULL, MP_BADARG); |
|
| 310 |
|
| 311 if(mp == from) |
|
| 312 return MP_OKAY; |
|
| 313 |
|
| 314 if((DIGITS(mp) = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL) |
|
| 315 return MP_MEM; |
|
| 316 |
|
| 317 s_mp_copy(DIGITS(from), DIGITS(mp), USED(from)); |
|
| 318 USED(mp) = USED(from); |
|
| 319 ALLOC(mp) = USED(from); |
|
| 320 SIGN(mp) = SIGN(from); |
|
| 321 |
|
| 322 return MP_OKAY; |
|
| 323 |
|
| 324 } /* end mp_init_copy() */ |
|
| 325 |
|
| 326 /* }}} */ |
|
| 327 |
|
| 328 /* {{{ mp_copy(from, to) */ |
|
| 329 |
|
| 330 /* |
|
| 331 mp_copy(from, to) |
|
| 332 |
|
| 333 Copies the mp_int 'from' to the mp_int 'to'. It is presumed that |
|
| 334 'to' has already been initialized (if not, use mp_init_copy() |
|
| 335 instead). If 'from' and 'to' are identical, nothing happens. |
|
| 336 */ |
|
| 337 |
|
| 338 mp_err mp_copy(mp_int *from, mp_int *to) |
|
| 339 { |
|
| 340 ARGCHK(from != NULL && to != NULL, MP_BADARG); |
|
| 341 |
|
| 342 if(from == to) |
|
| 343 return MP_OKAY; |
|
| 344 |
|
| 345 { /* copy */ |
|
| 346 mp_digit *tmp; |
|
| 347 |
|
| 348 /* |
|
| 349 If the allocated buffer in 'to' already has enough space to hold |
|
| 350 all the used digits of 'from', we'll re-use it to avoid hitting |
|
| 351 the memory allocater more than necessary; otherwise, we'd have |
|
| 352 to grow anyway, so we just allocate a hunk and make the copy as |
|
| 353 usual |
|
| 354 */ |
|
| 355 if(ALLOC(to) >= USED(from)) { |
|
| 356 s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from)); |
|
| 357 s_mp_copy(DIGITS(from), DIGITS(to), USED(from)); |
|
| 358 |
|
| 359 } else { |
|
| 360 if((tmp = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL) |
|
| 361 return MP_MEM; |
|
| 362 |
|
| 363 s_mp_copy(DIGITS(from), tmp, USED(from)); |
|
| 364 |
|
| 365 if(DIGITS(to) != NULL) { |
|
| 366 #if MP_CRYPTO |
|
| 367 s_mp_setz(DIGITS(to), ALLOC(to)); |
|
| 368 #endif |
|
| 369 s_mp_free(DIGITS(to)); |
|
| 370 } |
|
| 371 |
|
| 372 DIGITS(to) = tmp; |
|
| 373 ALLOC(to) = USED(from); |
|
| 374 } |
|
| 375 |
|
| 376 /* Copy the precision and sign from the original */ |
|
| 377 USED(to) = USED(from); |
|
| 378 SIGN(to) = SIGN(from); |
|
| 379 } /* end copy */ |
|
| 380 |
|
| 381 return MP_OKAY; |
|
| 382 |
|
| 383 } /* end mp_copy() */ |
|
| 384 |
|
| 385 /* }}} */ |
|
| 386 |
|
| 387 /* {{{ mp_exch(mp1, mp2) */ |
|
| 388 |
|
| 389 /* |
|
| 390 mp_exch(mp1, mp2) |
|
| 391 |
|
| 392 Exchange mp1 and mp2 without allocating any intermediate memory |
|
| 393 (well, unless you count the stack space needed for this call and the |
|
| 394 locals it creates...). This cannot fail. |
|
| 395 */ |
|
| 396 |
|
| 397 void mp_exch(mp_int *mp1, mp_int *mp2) |
|
| 398 { |
|
| 399 #if MP_ARGCHK == 2 |
|
| 400 assert(mp1 != NULL && mp2 != NULL); |
|
| 401 #else |
|
| 402 if(mp1 == NULL || mp2 == NULL) |
|
| 403 return; |
|
| 404 #endif |
|
| 405 |
|
| 406 s_mp_exch(mp1, mp2); |
|
| 407 |
|
| 408 } /* end mp_exch() */ |
|
| 409 |
|
| 410 /* }}} */ |
|
| 411 |
|
| 412 /* {{{ mp_clear(mp) */ |
|
| 413 |
|
| 414 /* |
|
| 415 mp_clear(mp) |
|
| 416 |
|
| 417 Release the storage used by an mp_int, and void its fields so that |
|
| 418 if someone calls mp_clear() again for the same int later, we won't |
|
| 419 get tollchocked. |
|
| 420 */ |
|
| 421 |
|
| 422 void mp_clear(mp_int *mp) |
|
| 423 { |
|
| 424 if(mp == NULL) |
|
| 425 return; |
|
| 426 |
|
| 427 if(DIGITS(mp) != NULL) { |
|
| 428 #if MP_CRYPTO |
|
| 429 s_mp_setz(DIGITS(mp), ALLOC(mp)); |
|
| 430 #endif |
|
| 431 s_mp_free(DIGITS(mp)); |
|
| 432 DIGITS(mp) = NULL; |
|
| 433 } |
|
| 434 |
|
| 435 USED(mp) = 0; |
|
| 436 ALLOC(mp) = 0; |
|
| 437 |
|
| 438 } /* end mp_clear() */ |
|
| 439 |
|
| 440 /* }}} */ |
|
| 441 |
|
| 442 /* {{{ mp_clear_array(mp[], count) */ |
|
| 443 |
|
| 444 void mp_clear_array(mp_int mp[], int count) |
|
| 445 { |
|
| 446 ARGCHK(mp != NULL && count > 0, MP_BADARG); |
|
| 447 |
|
| 448 while(--count >= 0) |
|
| 449 mp_clear(&mp[count]); |
|
| 450 |
|
| 451 } /* end mp_clear_array() */ |
|
| 452 |
|
| 453 /* }}} */ |
|
| 454 |
|
| 455 /* {{{ mp_zero(mp) */ |
|
| 456 |
|
| 457 /* |
|
| 458 mp_zero(mp) |
|
| 459 |
|
| 460 Set mp to zero. Does not change the allocated size of the structure, |
|
| 461 and therefore cannot fail (except on a bad argument, which we ignore) |
|
| 462 */ |
|
| 463 void mp_zero(mp_int *mp) |
|
| 464 { |
|
| 465 if(mp == NULL) |
|
| 466 return; |
|
| 467 |
|
| 468 s_mp_setz(DIGITS(mp), ALLOC(mp)); |
|
| 469 USED(mp) = 1; |
|
| 470 SIGN(mp) = MP_ZPOS; |
|
| 471 |
|
| 472 } /* end mp_zero() */ |
|
| 473 |
|
| 474 /* }}} */ |
|
| 475 |
|
| 476 /* {{{ mp_set(mp, d) */ |
|
| 477 |
|
| 478 void mp_set(mp_int *mp, mp_digit d) |
|
| 479 { |
|
| 480 if(mp == NULL) |
|
| 481 return; |
|
| 482 |
|
| 483 mp_zero(mp); |
|
| 484 DIGIT(mp, 0) = d; |
|
| 485 |
|
| 486 } /* end mp_set() */ |
|
| 487 |
|
| 488 /* }}} */ |
|
| 489 |
|
| 490 /* {{{ mp_set_int(mp, z) */ |
|
| 491 |
|
| 492 mp_err mp_set_int(mp_int *mp, long z) |
|
| 493 { |
|
| 494 int ix; |
|
| 495 unsigned long v = abs(z); |
|
| 496 mp_err res; |
|
| 497 |
|
| 498 ARGCHK(mp != NULL, MP_BADARG); |
|
| 499 |
|
| 500 mp_zero(mp); |
|
| 501 if(z == 0) |
|
| 502 return MP_OKAY; /* shortcut for zero */ |
|
| 503 |
|
| 504 for(ix = sizeof(long) - 1; ix >= 0; ix--) { |
|
| 505 |
|
| 506 if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY) |
|
| 507 return res; |
|
| 508 |
|
| 509 res = s_mp_add_d(mp, |
|
| 510 (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX)); |
|
| 511 if(res != MP_OKAY) |
|
| 512 return res; |
|
| 513 |
|
| 514 } |
|
| 515 |
|
| 516 if(z < 0) |
|
| 517 SIGN(mp) = MP_NEG; |
|
| 518 |
|
| 519 return MP_OKAY; |
|
| 520 |
|
| 521 } /* end mp_set_int() */ |
|
| 522 |
|
| 523 /* }}} */ |
|
| 524 |
|
| 525 /*------------------------------------------------------------------------*/ |
|
| 526 /* {{{ Digit arithmetic */ |
|
| 527 |
|
| 528 /* {{{ mp_add_d(a, d, b) */ |
|
| 529 |
|
| 530 /* |
|
| 531 mp_add_d(a, d, b) |
|
| 532 |
|
| 533 Compute the sum b = a + d, for a single digit d. Respects the sign of |
|
| 534 its primary addend (single digits are unsigned anyway). |
|
| 535 */ |
|
| 536 |
|
| 537 mp_err mp_add_d(mp_int *a, mp_digit d, mp_int *b) |
|
| 538 { |
|
| 539 mp_err res = MP_OKAY; |
|
| 540 |
|
| 541 ARGCHK(a != NULL && b != NULL, MP_BADARG); |
|
| 542 |
|
| 543 if((res = mp_copy(a, b)) != MP_OKAY) |
|
| 544 return res; |
|
| 545 |
|
| 546 if(SIGN(b) == MP_ZPOS) { |
|
| 547 res = s_mp_add_d(b, d); |
|
| 548 } else if(s_mp_cmp_d(b, d) >= 0) { |
|
| 549 res = s_mp_sub_d(b, d); |
|
| 550 } else { |
|
| 551 SIGN(b) = MP_ZPOS; |
|
| 552 |
|
| 553 DIGIT(b, 0) = d - DIGIT(b, 0); |
|
| 554 } |
|
| 555 |
|
| 556 return res; |
|
| 557 |
|
| 558 } /* end mp_add_d() */ |
|
| 559 |
|
| 560 /* }}} */ |
|
| 561 |
|
| 562 /* {{{ mp_sub_d(a, d, b) */ |
|
| 563 |
|
| 564 /* |
|
| 565 mp_sub_d(a, d, b) |
|
| 566 |
|
| 567 Compute the difference b = a - d, for a single digit d. Respects the |
|
| 568 sign of its subtrahend (single digits are unsigned anyway). |
|
| 569 */ |
|
| 570 |
|
| 571 mp_err mp_sub_d(mp_int *a, mp_digit d, mp_int *b) |
|
| 572 { |
|
| 573 mp_err res; |
|
| 574 |
|
| 575 ARGCHK(a != NULL && b != NULL, MP_BADARG); |
|
| 576 |
|
| 577 if((res = mp_copy(a, b)) != MP_OKAY) |
|
| 578 return res; |
|
| 579 |
|
| 580 if(SIGN(b) == MP_NEG) { |
|
| 581 if((res = s_mp_add_d(b, d)) != MP_OKAY) |
|
| 582 return res; |
|
| 583 |
|
| 584 } else if(s_mp_cmp_d(b, d) >= 0) { |
|
| 585 if((res = s_mp_sub_d(b, d)) != MP_OKAY) |
|
| 586 return res; |
|
| 587 |
|
| 588 } else { |
|
| 589 mp_neg(b, b); |
|
| 590 |
|
| 591 DIGIT(b, 0) = d - DIGIT(b, 0); |
|
| 592 SIGN(b) = MP_NEG; |
|
| 593 } |
|
| 594 |
|
| 595 if(s_mp_cmp_d(b, 0) == 0) |
|
| 596 SIGN(b) = MP_ZPOS; |
|
| 597 |
|
| 598 return MP_OKAY; |
|
| 599 |
|
| 600 } /* end mp_sub_d() */ |
|
| 601 |
|
| 602 /* }}} */ |
|
| 603 |
|
| 604 /* {{{ mp_mul_d(a, d, b) */ |
|
| 605 |
|
| 606 /* |
|
| 607 mp_mul_d(a, d, b) |
|
| 608 |
|
| 609 Compute the product b = a * d, for a single digit d. Respects the sign |
|
| 610 of its multiplicand (single digits are unsigned anyway) |
|
| 611 */ |
|
| 612 |
|
| 613 mp_err mp_mul_d(mp_int *a, mp_digit d, mp_int *b) |
|
| 614 { |
|
| 615 mp_err res; |
|
| 616 |
|
| 617 ARGCHK(a != NULL && b != NULL, MP_BADARG); |
|
| 618 |
|
| 619 if(d == 0) { |
|
| 620 mp_zero(b); |
|
| 621 return MP_OKAY; |
|
| 622 } |
|
| 623 |
|
| 624 if((res = mp_copy(a, b)) != MP_OKAY) |
|
| 625 return res; |
|
| 626 |
|
| 627 res = s_mp_mul_d(b, d); |
|
| 628 |
|
| 629 return res; |
|
| 630 |
|
| 631 } /* end mp_mul_d() */ |
|
| 632 |
|
| 633 /* }}} */ |
|
| 634 |
|
| 635 /* {{{ mp_mul_2(a, c) */ |
|
| 636 |
|
| 637 mp_err mp_mul_2(mp_int *a, mp_int *c) |
|
| 638 { |
|
| 639 mp_err res; |
|
| 640 |
|
| 641 ARGCHK(a != NULL && c != NULL, MP_BADARG); |
|
| 642 |
|
| 643 if((res = mp_copy(a, c)) != MP_OKAY) |
|
| 644 return res; |
|
| 645 |
|
| 646 return s_mp_mul_2(c); |
|
| 647 |
|
| 648 } /* end mp_mul_2() */ |
|
| 649 |
|
| 650 /* }}} */ |
|
| 651 |
|
| 652 /* {{{ mp_div_d(a, d, q, r) */ |
|
| 653 |
|
| 654 /* |
|
| 655 mp_div_d(a, d, q, r) |
|
| 656 |
|
| 657 Compute the quotient q = a / d and remainder r = a mod d, for a |
|
| 658 single digit d. Respects the sign of its divisor (single digits are |
|
| 659 unsigned anyway). |
|
| 660 */ |
|
| 661 |
|
| 662 mp_err mp_div_d(mp_int *a, mp_digit d, mp_int *q, mp_digit *r) |
|
| 663 { |
|
| 664 mp_err res; |
|
| 665 mp_digit rem; |
|
| 666 int pow; |
|
| 667 |
|
| 668 ARGCHK(a != NULL, MP_BADARG); |
|
| 669 |
|
| 670 if(d == 0) |
|
| 671 return MP_RANGE; |
|
| 672 |
|
| 673 /* Shortcut for powers of two ... */ |
|
| 674 if((pow = s_mp_ispow2d(d)) >= 0) { |
|
| 675 mp_digit mask; |
|
| 676 |
|
| 677 mask = (1 << pow) - 1; |
|
| 678 rem = DIGIT(a, 0) & mask; |
|
| 679 |
|
| 680 if(q) { |
|
| 681 mp_copy(a, q); |
|
| 682 s_mp_div_2d(q, pow); |
|
| 683 } |
|
| 684 |
|
| 685 if(r) |
|
| 686 *r = rem; |
|
| 687 |
|
| 688 return MP_OKAY; |
|
| 689 } |
|
| 690 |
|
| 691 /* |
|
| 692 If the quotient is actually going to be returned, we'll try to |
|
| 693 avoid hitting the memory allocator by copying the dividend into it |
|
| 694 and doing the division there. This can't be any _worse_ than |
|
| 695 always copying, and will sometimes be better (since it won't make |
|
| 696 another copy) |
|
| 697 |
|
| 698 If it's not going to be returned, we need to allocate a temporary |
|
| 699 to hold the quotient, which will just be discarded. |
|
| 700 */ |
|
| 701 if(q) { |
|
| 702 if((res = mp_copy(a, q)) != MP_OKAY) |
|
| 703 return res; |
|
| 704 |
|
| 705 res = s_mp_div_d(q, d, &rem); |
|
| 706 if(s_mp_cmp_d(q, 0) == MP_EQ) |
|
| 707 SIGN(q) = MP_ZPOS; |
|
| 708 |
|
| 709 } else { |
|
| 710 mp_int qp; |
|
| 711 |
|
| 712 if((res = mp_init_copy(&qp, a)) != MP_OKAY) |
|
| 713 return res; |
|
| 714 |
|
| 715 res = s_mp_div_d(&qp, d, &rem); |
|
| 716 if(s_mp_cmp_d(&qp, 0) == 0) |
|
| 717 SIGN(&qp) = MP_ZPOS; |
|
| 718 |
|
| 719 mp_clear(&qp); |
|
| 720 } |
|
| 721 |
|
| 722 if(r) |
|
| 723 *r = rem; |
|
| 724 |
|
| 725 return res; |
|
| 726 |
|
| 727 } /* end mp_div_d() */ |
|
| 728 |
|
| 729 /* }}} */ |
|
| 730 |
|
| 731 /* {{{ mp_div_2(a, c) */ |
|
| 732 |
|
| 733 /* |
|
| 734 mp_div_2(a, c) |
|
| 735 |
|
| 736 Compute c = a / 2, disregarding the remainder. |
|
| 737 */ |
|
| 738 |
|
| 739 mp_err mp_div_2(mp_int *a, mp_int *c) |
|
| 740 { |
|
| 741 mp_err res; |
|
| 742 |
|
| 743 ARGCHK(a != NULL && c != NULL, MP_BADARG); |
|
| 744 |
|
| 745 if((res = mp_copy(a, c)) != MP_OKAY) |
|
| 746 return res; |
|
| 747 |
|
| 748 s_mp_div_2(c); |
|
| 749 |
|
| 750 return MP_OKAY; |
|
| 751 |
|
| 752 } /* end mp_div_2() */ |
|
| 753 |
|
| 754 /* }}} */ |
|
| 755 |
|
| 756 /* {{{ mp_expt_d(a, d, b) */ |
|
| 757 |
|
| 758 mp_err mp_expt_d(mp_int *a, mp_digit d, mp_int *c) |
|
| 759 { |
|
| 760 mp_int s, x; |
|
| 761 mp_err res; |
|
| 762 mp_sign cs = MP_ZPOS; |
|
| 763 |
|
| 764 ARGCHK(a != NULL && c != NULL, MP_BADARG); |
|
| 765 |
|
| 766 if((res = mp_init(&s)) != MP_OKAY) |
|
| 767 return res; |
|
| 768 if((res = mp_init_copy(&x, a)) != MP_OKAY) |
|
| 769 goto X; |
|
| 770 |
|
| 771 DIGIT(&s, 0) = 1; |
|
| 772 |
|
| 773 if((d % 2) == 1) |
|
| 774 cs = SIGN(a); |
|
| 775 |
|
| 776 while(d != 0) { |
|
| 777 if(d & 1) { |
|
| 778 if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
|
| 779 goto CLEANUP; |
|
| 780 } |
|
| 781 |
|
| 782 d >>= 1; |
|
| 783 |
|
| 784 if((res = s_mp_sqr(&x)) != MP_OKAY) |
|
| 785 goto CLEANUP; |
|
| 786 } |
|
| 787 |
|
| 788 SIGN(&s) = cs; |
|
| 789 |
|
| 790 s_mp_exch(&s, c); |
|
| 791 |
|
| 792 CLEANUP: |
|
| 793 mp_clear(&x); |
|
| 794 X: |
|
| 795 mp_clear(&s); |
|
| 796 |
|
| 797 return res; |
|
| 798 |
|
| 799 } /* end mp_expt_d() */ |
|
| 800 |
|
| 801 /* }}} */ |
|
| 802 |
|
| 803 /* }}} */ |
|
| 804 |
|
| 805 /*------------------------------------------------------------------------*/ |
|
| 806 /* {{{ Full arithmetic */ |
|
| 807 |
|
| 808 /* {{{ mp_abs(a, b) */ |
|
| 809 |
|
| 810 /* |
|
| 811 mp_abs(a, b) |
|
| 812 |
|
| 813 Compute b = |a|. 'a' and 'b' may be identical. |
|
| 814 */ |
|
| 815 |
|
| 816 mp_err mp_abs(mp_int *a, mp_int *b) |
|
| 817 { |
|
| 818 mp_err res; |
|
| 819 |
|
| 820 ARGCHK(a != NULL && b != NULL, MP_BADARG); |
|
| 821 |
|
| 822 if((res = mp_copy(a, b)) != MP_OKAY) |
|
| 823 return res; |
|
| 824 |
|
| 825 SIGN(b) = MP_ZPOS; |
|
| 826 |
|
| 827 return MP_OKAY; |
|
| 828 |
|
| 829 } /* end mp_abs() */ |
|
| 830 |
|
| 831 /* }}} */ |
|
| 832 |
|
| 833 /* {{{ mp_neg(a, b) */ |
|
| 834 |
|
| 835 /* |
|
| 836 mp_neg(a, b) |
|
| 837 |
|
| 838 Compute b = -a. 'a' and 'b' may be identical. |
|
| 839 */ |
|
| 840 |
|
| 841 mp_err mp_neg(mp_int *a, mp_int *b) |
|
| 842 { |
|
| 843 mp_err res; |
|
| 844 |
|
| 845 ARGCHK(a != NULL && b != NULL, MP_BADARG); |
|
| 846 |
|
| 847 if((res = mp_copy(a, b)) != MP_OKAY) |
|
| 848 return res; |
|
| 849 |
|
| 850 if(s_mp_cmp_d(b, 0) == MP_EQ) |
|
| 851 SIGN(b) = MP_ZPOS; |
|
| 852 else |
|
| 853 SIGN(b) = (SIGN(b) == MP_NEG) ? MP_ZPOS : MP_NEG; |
|
| 854 |
|
| 855 return MP_OKAY; |
|
| 856 |
|
| 857 } /* end mp_neg() */ |
|
| 858 |
|
| 859 /* }}} */ |
|
| 860 |
|
| 861 /* {{{ mp_add(a, b, c) */ |
|
| 862 |
|
| 863 /* |
|
| 864 mp_add(a, b, c) |
|
| 865 |
|
| 866 Compute c = a + b. All parameters may be identical. |
|
| 867 */ |
|
| 868 |
|
| 869 mp_err mp_add(mp_int *a, mp_int *b, mp_int *c) |
|
| 870 { |
|
| 871 mp_err res; |
|
| 872 int cmp; |
|
| 873 |
|
| 874 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
|
| 875 |
|
| 876 if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */ |
|
| 877 |
|
| 878 /* Commutativity of addition lets us do this in either order, |
|
| 879 so we avoid having to use a temporary even if the result |
|
| 880 is supposed to replace the output |
|
| 881 */ |
|
| 882 if(c == b) { |
|
| 883 if((res = s_mp_add(c, a)) != MP_OKAY) |
|
| 884 return res; |
|
| 885 } else { |
|
| 886 if(c != a && (res = mp_copy(a, c)) != MP_OKAY) |
|
| 887 return res; |
|
| 888 |
|
| 889 if((res = s_mp_add(c, b)) != MP_OKAY) |
|
| 890 return res; |
|
| 891 } |
|
| 892 |
|
| 893 } else if((cmp = s_mp_cmp(a, b)) > 0) { /* different sign: a > b */ |
|
| 894 |
|
| 895 /* If the output is going to be clobbered, we will use a temporary |
|
| 896 variable; otherwise, we'll do it without touching the memory |
|
| 897 allocator at all, if possible |
|
| 898 */ |
|
| 899 if(c == b) { |
|
| 900 mp_int tmp; |
|
| 901 |
|
| 902 if((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
|
| 903 return res; |
|
| 904 if((res = s_mp_sub(&tmp, b)) != MP_OKAY) { |
|
| 905 mp_clear(&tmp); |
|
| 906 return res; |
|
| 907 } |
|
| 908 |
|
| 909 s_mp_exch(&tmp, c); |
|
| 910 mp_clear(&tmp); |
|
| 911 |
|
| 912 } else { |
|
| 913 |
|
| 914 if(c != a && (res = mp_copy(a, c)) != MP_OKAY) |
|
| 915 return res; |
|
| 916 if((res = s_mp_sub(c, b)) != MP_OKAY) |
|
| 917 return res; |
|
| 918 |
|
| 919 } |
|
| 920 |
|
| 921 } else if(cmp == 0) { /* different sign, a == b */ |
|
| 922 |
|
| 923 mp_zero(c); |
|
| 924 return MP_OKAY; |
|
| 925 |
|
| 926 } else { /* different sign: a < b */ |
|
| 927 |
|
| 928 /* See above... */ |
|
| 929 if(c == a) { |
|
| 930 mp_int tmp; |
|
| 931 |
|
| 932 if((res = mp_init_copy(&tmp, b)) != MP_OKAY) |
|
| 933 return res; |
|
| 934 if((res = s_mp_sub(&tmp, a)) != MP_OKAY) { |
|
| 935 mp_clear(&tmp); |
|
| 936 return res; |
|
| 937 } |
|
| 938 |
|
| 939 s_mp_exch(&tmp, c); |
|
| 940 mp_clear(&tmp); |
|
| 941 |
|
| 942 } else { |
|
| 943 |
|
| 944 if(c != b && (res = mp_copy(b, c)) != MP_OKAY) |
|
| 945 return res; |
|
| 946 if((res = s_mp_sub(c, a)) != MP_OKAY) |
|
| 947 return res; |
|
| 948 |
|
| 949 } |
|
| 950 } |
|
| 951 |
|
| 952 if(USED(c) == 1 && DIGIT(c, 0) == 0) |
|
| 953 SIGN(c) = MP_ZPOS; |
|
| 954 |
|
| 955 return MP_OKAY; |
|
| 956 |
|
| 957 } /* end mp_add() */ |
|
| 958 |
|
| 959 /* }}} */ |
|
| 960 |
|
| 961 /* {{{ mp_sub(a, b, c) */ |
|
| 962 |
|
| 963 /* |
|
| 964 mp_sub(a, b, c) |
|
| 965 |
|
| 966 Compute c = a - b. All parameters may be identical. |
|
| 967 */ |
|
| 968 |
|
| 969 mp_err mp_sub(mp_int *a, mp_int *b, mp_int *c) |
|
| 970 { |
|
| 971 mp_err res; |
|
| 972 int cmp; |
|
| 973 |
|
| 974 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
|
| 975 |
|
| 976 if(SIGN(a) != SIGN(b)) { |
|
| 977 if(c == a) { |
|
| 978 if((res = s_mp_add(c, b)) != MP_OKAY) |
|
| 979 return res; |
|
| 980 } else { |
|
| 981 if(c != b && ((res = mp_copy(b, c)) != MP_OKAY)) |
|
| 982 return res; |
|
| 983 if((res = s_mp_add(c, a)) != MP_OKAY) |
|
| 984 return res; |
|
| 985 SIGN(c) = SIGN(a); |
|
| 986 } |
|
| 987 |
|
| 988 } else if((cmp = s_mp_cmp(a, b)) > 0) { /* Same sign, a > b */ |
|
| 989 if(c == b) { |
|
| 990 mp_int tmp; |
|
| 991 |
|
| 992 if((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
|
| 993 return res; |
|
| 994 if((res = s_mp_sub(&tmp, b)) != MP_OKAY) { |
|
| 995 mp_clear(&tmp); |
|
| 996 return res; |
|
| 997 } |
|
| 998 s_mp_exch(&tmp, c); |
|
| 999 mp_clear(&tmp); |
|
| 1000 |
|
| 1001 } else { |
|
| 1002 if(c != a && ((res = mp_copy(a, c)) != MP_OKAY)) |
|
| 1003 return res; |
|
| 1004 |
|
| 1005 if((res = s_mp_sub(c, b)) != MP_OKAY) |
|
| 1006 return res; |
|
| 1007 } |
|
| 1008 |
|
| 1009 } else if(cmp == 0) { /* Same sign, equal magnitude */ |
|
| 1010 mp_zero(c); |
|
| 1011 return MP_OKAY; |
|
| 1012 |
|
| 1013 } else { /* Same sign, b > a */ |
|
| 1014 if(c == a) { |
|
| 1015 mp_int tmp; |
|
| 1016 |
|
| 1017 if((res = mp_init_copy(&tmp, b)) != MP_OKAY) |
|
| 1018 return res; |
|
| 1019 |
|
| 1020 if((res = s_mp_sub(&tmp, a)) != MP_OKAY) { |
|
| 1021 mp_clear(&tmp); |
|
| 1022 return res; |
|
| 1023 } |
|
| 1024 s_mp_exch(&tmp, c); |
|
| 1025 mp_clear(&tmp); |
|
| 1026 |
|
| 1027 } else { |
|
| 1028 if(c != b && ((res = mp_copy(b, c)) != MP_OKAY)) |
|
| 1029 return res; |
|
| 1030 |
|
| 1031 if((res = s_mp_sub(c, a)) != MP_OKAY) |
|
| 1032 return res; |
|
| 1033 } |
|
| 1034 |
|
| 1035 SIGN(c) = !SIGN(b); |
|
| 1036 } |
|
| 1037 |
|
| 1038 if(USED(c) == 1 && DIGIT(c, 0) == 0) |
|
| 1039 SIGN(c) = MP_ZPOS; |
|
| 1040 |
|
| 1041 return MP_OKAY; |
|
| 1042 |
|
| 1043 } /* end mp_sub() */ |
|
| 1044 |
|
| 1045 /* }}} */ |
|
| 1046 |
|
| 1047 /* {{{ mp_mul(a, b, c) */ |
|
| 1048 |
|
| 1049 /* |
|
| 1050 mp_mul(a, b, c) |
|
| 1051 |
|
| 1052 Compute c = a * b. All parameters may be identical. |
|
| 1053 */ |
|
| 1054 |
|
| 1055 mp_err mp_mul(mp_int *a, mp_int *b, mp_int *c) |
|
| 1056 { |
|
| 1057 mp_err res; |
|
| 1058 mp_sign sgn; |
|
| 1059 |
|
| 1060 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
|
| 1061 |
|
| 1062 sgn = (SIGN(a) == SIGN(b)) ? MP_ZPOS : MP_NEG; |
|
| 1063 |
|
| 1064 if(c == b) { |
|
| 1065 if((res = s_mp_mul(c, a)) != MP_OKAY) |
|
| 1066 return res; |
|
| 1067 |
|
| 1068 } else { |
|
| 1069 if((res = mp_copy(a, c)) != MP_OKAY) |
|
| 1070 return res; |
|
| 1071 |
|
| 1072 if((res = s_mp_mul(c, b)) != MP_OKAY) |
|
| 1073 return res; |
|
| 1074 } |
|
| 1075 |
|
| 1076 if(sgn == MP_ZPOS || s_mp_cmp_d(c, 0) == MP_EQ) |
|
| 1077 SIGN(c) = MP_ZPOS; |
|
| 1078 else |
|
| 1079 SIGN(c) = sgn; |
|
| 1080 |
|
| 1081 return MP_OKAY; |
|
| 1082 |
|
| 1083 } /* end mp_mul() */ |
|
| 1084 |
|
| 1085 /* }}} */ |
|
| 1086 |
|
| 1087 /* {{{ mp_mul_2d(a, d, c) */ |
|
| 1088 |
|
| 1089 /* |
|
| 1090 mp_mul_2d(a, d, c) |
|
| 1091 |
|
| 1092 Compute c = a * 2^d. a may be the same as c. |
|
| 1093 */ |
|
| 1094 |
|
| 1095 mp_err mp_mul_2d(mp_int *a, mp_digit d, mp_int *c) |
|
| 1096 { |
|
| 1097 mp_err res; |
|
| 1098 |
|
| 1099 ARGCHK(a != NULL && c != NULL, MP_BADARG); |
|
| 1100 |
|
| 1101 if((res = mp_copy(a, c)) != MP_OKAY) |
|
| 1102 return res; |
|
| 1103 |
|
| 1104 if(d == 0) |
|
| 1105 return MP_OKAY; |
|
| 1106 |
|
| 1107 return s_mp_mul_2d(c, d); |
|
| 1108 |
|
| 1109 } /* end mp_mul() */ |
|
| 1110 |
|
| 1111 /* }}} */ |
|
| 1112 |
|
| 1113 /* {{{ mp_sqr(a, b) */ |
|
| 1114 |
|
| 1115 #if MP_SQUARE |
|
| 1116 mp_err mp_sqr(mp_int *a, mp_int *b) |
|
| 1117 { |
|
| 1118 mp_err res; |
|
| 1119 |
|
| 1120 ARGCHK(a != NULL && b != NULL, MP_BADARG); |
|
| 1121 |
|
| 1122 if((res = mp_copy(a, b)) != MP_OKAY) |
|
| 1123 return res; |
|
| 1124 |
|
| 1125 if((res = s_mp_sqr(b)) != MP_OKAY) |
|
| 1126 return res; |
|
| 1127 |
|
| 1128 SIGN(b) = MP_ZPOS; |
|
| 1129 |
|
| 1130 return MP_OKAY; |
|
| 1131 |
|
| 1132 } /* end mp_sqr() */ |
|
| 1133 #endif |
|
| 1134 |
|
| 1135 /* }}} */ |
|
| 1136 |
|
| 1137 /* {{{ mp_div(a, b, q, r) */ |
|
| 1138 |
|
| 1139 /* |
|
| 1140 mp_div(a, b, q, r) |
|
| 1141 |
|
| 1142 Compute q = a / b and r = a mod b. Input parameters may be re-used |
|
| 1143 as output parameters. If q or r is NULL, that portion of the |
|
| 1144 computation will be discarded (although it will still be computed) |
|
| 1145 |
|
| 1146 Pay no attention to the hacker behind the curtain. |
|
| 1147 */ |
|
| 1148 |
|
| 1149 mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r) |
|
| 1150 { |
|
| 1151 mp_err res; |
|
| 1152 mp_int qtmp, rtmp; |
|
| 1153 int cmp; |
|
| 1154 |
|
| 1155 ARGCHK(a != NULL && b != NULL, MP_BADARG); |
|
| 1156 |
|
| 1157 if(mp_cmp_z(b) == MP_EQ) |
|
| 1158 return MP_RANGE; |
|
| 1159 |
|
| 1160 /* If a <= b, we can compute the solution without division, and |
|
| 1161 avoid any memory allocation |
|
| 1162 */ |
|
| 1163 if((cmp = s_mp_cmp(a, b)) < 0) { |
|
| 1164 if(r) { |
|
| 1165 if((res = mp_copy(a, r)) != MP_OKAY) |
|
| 1166 return res; |
|
| 1167 } |
|
| 1168 |
|
| 1169 if(q) |
|
| 1170 mp_zero(q); |
|
| 1171 |
|
| 1172 return MP_OKAY; |
|
| 1173 |
|
| 1174 } else if(cmp == 0) { |
|
| 1175 |
|
| 1176 /* Set quotient to 1, with appropriate sign */ |
|
| 1177 if(q) { |
|
| 1178 int qneg = (SIGN(a) != SIGN(b)); |
|
| 1179 |
|
| 1180 mp_set(q, 1); |
|
| 1181 if(qneg) |
|
| 1182 SIGN(q) = MP_NEG; |
|
| 1183 } |
|
| 1184 |
|
| 1185 if(r) |
|
| 1186 mp_zero(r); |
|
| 1187 |
|
| 1188 return MP_OKAY; |
|
| 1189 } |
|
| 1190 |
|
| 1191 /* If we get here, it means we actually have to do some division */ |
|
| 1192 |
|
| 1193 /* Set up some temporaries... */ |
|
| 1194 if((res = mp_init_copy(&qtmp, a)) != MP_OKAY) |
|
| 1195 return res; |
|
| 1196 if((res = mp_init_copy(&rtmp, b)) != MP_OKAY) |
|
| 1197 goto CLEANUP; |
|
| 1198 |
|
| 1199 if((res = s_mp_div(&qtmp, &rtmp)) != MP_OKAY) |
|
| 1200 goto CLEANUP; |
|
| 1201 |
|
| 1202 /* Compute the signs for the output */ |
|
| 1203 SIGN(&rtmp) = SIGN(a); /* Sr = Sa */ |
|
| 1204 if(SIGN(a) == SIGN(b)) |
|
| 1205 SIGN(&qtmp) = MP_ZPOS; /* Sq = MP_ZPOS if Sa = Sb */ |
|
| 1206 else |
|
| 1207 SIGN(&qtmp) = MP_NEG; /* Sq = MP_NEG if Sa != Sb */ |
|
| 1208 |
|
| 1209 if(s_mp_cmp_d(&qtmp, 0) == MP_EQ) |
|
| 1210 SIGN(&qtmp) = MP_ZPOS; |
|
| 1211 if(s_mp_cmp_d(&rtmp, 0) == MP_EQ) |
|
| 1212 SIGN(&rtmp) = MP_ZPOS; |
|
| 1213 |
|
| 1214 /* Copy output, if it is needed */ |
|
| 1215 if(q) |
|
| 1216 s_mp_exch(&qtmp, q); |
|
| 1217 |
|
| 1218 if(r) |
|
| 1219 s_mp_exch(&rtmp, r); |
|
| 1220 |
|
| 1221 CLEANUP: |
|
| 1222 mp_clear(&rtmp); |
|
| 1223 mp_clear(&qtmp); |
|
| 1224 |
|
| 1225 return res; |
|
| 1226 |
|
| 1227 } /* end mp_div() */ |
|
| 1228 |
|
| 1229 /* }}} */ |
|
| 1230 |
|
| 1231 /* {{{ mp_div_2d(a, d, q, r) */ |
|
| 1232 |
|
| 1233 mp_err mp_div_2d(mp_int *a, mp_digit d, mp_int *q, mp_int *r) |
|
| 1234 { |
|
| 1235 mp_err res; |
|
| 1236 |
|
| 1237 ARGCHK(a != NULL, MP_BADARG); |
|
| 1238 |
|
| 1239 if(q) { |
|
| 1240 if((res = mp_copy(a, q)) != MP_OKAY) |
|
| 1241 return res; |
|
| 1242 |
|
| 1243 s_mp_div_2d(q, d); |
|
| 1244 } |
|
| 1245 |
|
| 1246 if(r) { |
|
| 1247 if((res = mp_copy(a, r)) != MP_OKAY) |
|
| 1248 return res; |
|
| 1249 |
|
| 1250 s_mp_mod_2d(r, d); |
|
| 1251 } |
|
| 1252 |
|
| 1253 return MP_OKAY; |
|
| 1254 |
|
| 1255 } /* end mp_div_2d() */ |
|
| 1256 |
|
| 1257 /* }}} */ |
|
| 1258 |
|
| 1259 /* {{{ mp_expt(a, b, c) */ |
|
| 1260 |
|
| 1261 /* |
|
| 1262 mp_expt(a, b, c) |
|
| 1263 |
|
| 1264 Compute c = a ** b, that is, raise a to the b power. Uses a |
|
| 1265 standard iterative square-and-multiply technique. |
|
| 1266 */ |
|
| 1267 |
|
| 1268 mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c) |
|
| 1269 { |
|
| 1270 mp_int s, x; |
|
| 1271 mp_err res; |
|
| 1272 mp_digit d; |
|
| 1273 int dig, bit; |
|
| 1274 |
|
| 1275 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
|
| 1276 |
|
| 1277 if(mp_cmp_z(b) < 0) |
|
| 1278 return MP_RANGE; |
|
| 1279 |
|
| 1280 if((res = mp_init(&s)) != MP_OKAY) |
|
| 1281 return res; |
|
| 1282 |
|
| 1283 mp_set(&s, 1); |
|
| 1284 |
|
| 1285 if((res = mp_init_copy(&x, a)) != MP_OKAY) |
|
| 1286 goto X; |
|
| 1287 |
|
| 1288 /* Loop over low-order digits in ascending order */ |
|
| 1289 for(dig = 0; dig < (USED(b) - 1); dig++) { |
|
| 1290 d = DIGIT(b, dig); |
|
| 1291 |
|
| 1292 /* Loop over bits of each non-maximal digit */ |
|
| 1293 for(bit = 0; bit < DIGIT_BIT; bit++) { |
|
| 1294 if(d & 1) { |
|
| 1295 if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
|
| 1296 goto CLEANUP; |
|
| 1297 } |
|
| 1298 |
|
| 1299 d >>= 1; |
|
| 1300 |
|
| 1301 if((res = s_mp_sqr(&x)) != MP_OKAY) |
|
| 1302 goto CLEANUP; |
|
| 1303 } |
|
| 1304 } |
|
| 1305 |
|
| 1306 /* Consider now the last digit... */ |
|
| 1307 d = DIGIT(b, dig); |
|
| 1308 |
|
| 1309 while(d) { |
|
| 1310 if(d & 1) { |
|
| 1311 if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
|
| 1312 goto CLEANUP; |
|
| 1313 } |
|
| 1314 |
|
| 1315 d >>= 1; |
|
| 1316 |
|
| 1317 if((res = s_mp_sqr(&x)) != MP_OKAY) |
|
| 1318 goto CLEANUP; |
|
| 1319 } |
|
| 1320 |
|
| 1321 if(mp_iseven(b)) |
|
| 1322 SIGN(&s) = SIGN(a); |
|
| 1323 |
|
| 1324 res = mp_copy(&s, c); |
|
| 1325 |
|
| 1326 CLEANUP: |
|
| 1327 mp_clear(&x); |
|
| 1328 X: |
|
| 1329 mp_clear(&s); |
|
| 1330 |
|
| 1331 return res; |
|
| 1332 |
|
| 1333 } /* end mp_expt() */ |
|
| 1334 |
|
| 1335 /* }}} */ |
|
| 1336 |
|
| 1337 /* {{{ mp_2expt(a, k) */ |
|
| 1338 |
|
| 1339 /* Compute a = 2^k */ |
|
| 1340 |
|
| 1341 mp_err mp_2expt(mp_int *a, mp_digit k) |
|
| 1342 { |
|
| 1343 ARGCHK(a != NULL, MP_BADARG); |
|
| 1344 |
|
| 1345 return s_mp_2expt(a, k); |
|
| 1346 |
|
| 1347 } /* end mp_2expt() */ |
|
| 1348 |
|
| 1349 /* }}} */ |
|
| 1350 |
|
| 1351 /* {{{ mp_mod(a, m, c) */ |
|
| 1352 |
|
| 1353 /* |
|
| 1354 mp_mod(a, m, c) |
|
| 1355 |
|
| 1356 Compute c = a (mod m). Result will always be 0 <= c < m. |
|
| 1357 */ |
|
| 1358 |
|
| 1359 mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c) |
|
| 1360 { |
|
| 1361 mp_err res; |
|
| 1362 int mag; |
|
| 1363 |
|
| 1364 ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); |
|
| 1365 |
|
| 1366 if(SIGN(m) == MP_NEG) |
|
| 1367 return MP_RANGE; |
|
| 1368 |
|
| 1369 /* |
|
| 1370 If |a| > m, we need to divide to get the remainder and take the |
|
| 1371 absolute value. |
|
| 1372 |
|
| 1373 If |a| < m, we don't need to do any division, just copy and adjust |
|
| 1374 the sign (if a is negative). |
|
| 1375 |
|
| 1376 If |a| == m, we can simply set the result to zero. |
|
| 1377 |
|
| 1378 This order is intended to minimize the average path length of the |
|
| 1379 comparison chain on common workloads -- the most frequent cases are |
|
| 1380 that |a| != m, so we do those first. |
|
| 1381 */ |
|
| 1382 if((mag = s_mp_cmp(a, m)) > 0) { |
|
| 1383 if((res = mp_div(a, m, NULL, c)) != MP_OKAY) |
|
| 1384 return res; |
|
| 1385 |
|
| 1386 if(SIGN(c) == MP_NEG) { |
|
| 1387 if((res = mp_add(c, m, c)) != MP_OKAY) |
|
| 1388 return res; |
|
| 1389 } |
|
| 1390 |
|
| 1391 } else if(mag < 0) { |
|
| 1392 if((res = mp_copy(a, c)) != MP_OKAY) |
|
| 1393 return res; |
|
| 1394 |
|
| 1395 if(mp_cmp_z(a) < 0) { |
|
| 1396 if((res = mp_add(c, m, c)) != MP_OKAY) |
|
| 1397 return res; |
|
| 1398 |
|
| 1399 } |
|
| 1400 |
|
| 1401 } else { |
|
| 1402 mp_zero(c); |
|
| 1403 |
|
| 1404 } |
|
| 1405 |
|
| 1406 return MP_OKAY; |
|
| 1407 |
|
| 1408 } /* end mp_mod() */ |
|
| 1409 |
|
| 1410 /* }}} */ |
|
| 1411 |
|
| 1412 /* {{{ mp_mod_d(a, d, c) */ |
|
| 1413 |
|
| 1414 /* |
|
| 1415 mp_mod_d(a, d, c) |
|
| 1416 |
|
| 1417 Compute c = a (mod d). Result will always be 0 <= c < d |
|
| 1418 */ |
|
| 1419 mp_err mp_mod_d(mp_int *a, mp_digit d, mp_digit *c) |
|
| 1420 { |
|
| 1421 mp_err res; |
|
| 1422 mp_digit rem; |
|
| 1423 |
|
| 1424 ARGCHK(a != NULL && c != NULL, MP_BADARG); |
|
| 1425 |
|
| 1426 if(s_mp_cmp_d(a, d) > 0) { |
|
| 1427 if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY) |
|
| 1428 return res; |
|
| 1429 |
|
| 1430 } else { |
|
| 1431 if(SIGN(a) == MP_NEG) |
|
| 1432 rem = d - DIGIT(a, 0); |
|
| 1433 else |
|
| 1434 rem = DIGIT(a, 0); |
|
| 1435 } |
|
| 1436 |
|
| 1437 if(c) |
|
| 1438 *c = rem; |
|
| 1439 |
|
| 1440 return MP_OKAY; |
|
| 1441 |
|
| 1442 } /* end mp_mod_d() */ |
|
| 1443 |
|
| 1444 /* }}} */ |
|
| 1445 |
|
| 1446 /* {{{ mp_sqrt(a, b) */ |
|
| 1447 |
|
| 1448 /* |
|
| 1449 mp_sqrt(a, b) |
|
| 1450 |
|
| 1451 Compute the integer square root of a, and store the result in b. |
|
| 1452 Uses an integer-arithmetic version of Newton's iterative linear |
|
| 1453 approximation technique to determine this value; the result has the |
|
| 1454 following two properties: |
|
| 1455 |
|
| 1456 b^2 <= a |
|
| 1457 (b+1)^2 >= a |
|
| 1458 |
|
| 1459 It is a range error to pass a negative value. |
|
| 1460 */ |
|
| 1461 mp_err mp_sqrt(mp_int *a, mp_int *b) |
|
| 1462 { |
|
| 1463 mp_int x, t; |
|
| 1464 mp_err res; |
|
| 1465 |
|
| 1466 ARGCHK(a != NULL && b != NULL, MP_BADARG); |
|
| 1467 |
|
| 1468 /* Cannot take square root of a negative value */ |
|
| 1469 if(SIGN(a) == MP_NEG) |
|
| 1470 return MP_RANGE; |
|
| 1471 |
|
| 1472 /* Special cases for zero and one, trivial */ |
|
| 1473 if(mp_cmp_d(a, 0) == MP_EQ || mp_cmp_d(a, 1) == MP_EQ) |
|
| 1474 return mp_copy(a, b); |
|
| 1475 |
|
| 1476 /* Initialize the temporaries we'll use below */ |
|
| 1477 if((res = mp_init_size(&t, USED(a))) != MP_OKAY) |
|
| 1478 return res; |
|
| 1479 |
|
| 1480 /* Compute an initial guess for the iteration as a itself */ |
|
| 1481 if((res = mp_init_copy(&x, a)) != MP_OKAY) |
|
| 1482 goto X; |
|
| 1483 |
|
| 1484 for(;;) { |
|
| 1485 /* t = (x * x) - a */ |
|
| 1486 mp_copy(&x, &t); /* can't fail, t is big enough for original x */ |
|
| 1487 if((res = mp_sqr(&t, &t)) != MP_OKAY || |
|
| 1488 (res = mp_sub(&t, a, &t)) != MP_OKAY) |
|
| 1489 goto CLEANUP; |
|
| 1490 |
|
| 1491 /* t = t / 2x */ |
|
| 1492 s_mp_mul_2(&x); |
|
| 1493 if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY) |
|
| 1494 goto CLEANUP; |
|
| 1495 s_mp_div_2(&x); |
|
| 1496 |
|
| 1497 /* Terminate the loop, if the quotient is zero */ |
|
| 1498 if(mp_cmp_z(&t) == MP_EQ) |
|
| 1499 break; |
|
| 1500 |
|
| 1501 /* x = x - t */ |
|
| 1502 if((res = mp_sub(&x, &t, &x)) != MP_OKAY) |
|
| 1503 goto CLEANUP; |
|
| 1504 |
|
| 1505 } |
|
| 1506 |
|
| 1507 /* Copy result to output parameter */ |
|
| 1508 mp_sub_d(&x, 1, &x); |
|
| 1509 s_mp_exch(&x, b); |
|
| 1510 |
|
| 1511 CLEANUP: |
|
| 1512 mp_clear(&x); |
|
| 1513 X: |
|
| 1514 mp_clear(&t); |
|
| 1515 |
|
| 1516 return res; |
|
| 1517 |
|
| 1518 } /* end mp_sqrt() */ |
|
| 1519 |
|
| 1520 /* }}} */ |
|
| 1521 |
|
| 1522 /* }}} */ |
|
| 1523 |
|
| 1524 /*------------------------------------------------------------------------*/ |
|
| 1525 /* {{{ Modular arithmetic */ |
|
| 1526 |
|
| 1527 #if MP_MODARITH |
|
| 1528 /* {{{ mp_addmod(a, b, m, c) */ |
|
| 1529 |
|
| 1530 /* |
|
| 1531 mp_addmod(a, b, m, c) |
|
| 1532 |
|
| 1533 Compute c = (a + b) mod m |
|
| 1534 */ |
|
| 1535 |
|
| 1536 mp_err mp_addmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c) |
|
| 1537 { |
|
| 1538 mp_err res; |
|
| 1539 |
|
| 1540 ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
|
| 1541 |
|
| 1542 if((res = mp_add(a, b, c)) != MP_OKAY) |
|
| 1543 return res; |
|
| 1544 if((res = mp_mod(c, m, c)) != MP_OKAY) |
|
| 1545 return res; |
|
| 1546 |
|
| 1547 return MP_OKAY; |
|
| 1548 |
|
| 1549 } |
|
| 1550 |
|
| 1551 /* }}} */ |
|
| 1552 |
|
| 1553 /* {{{ mp_submod(a, b, m, c) */ |
|
| 1554 |
|
| 1555 /* |
|
| 1556 mp_submod(a, b, m, c) |
|
| 1557 |
|
| 1558 Compute c = (a - b) mod m |
|
| 1559 */ |
|
| 1560 |
|
| 1561 mp_err mp_submod(mp_int *a, mp_int *b, mp_int *m, mp_int *c) |
|
| 1562 { |
|
| 1563 mp_err res; |
|
| 1564 |
|
| 1565 ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
|
| 1566 |
|
| 1567 if((res = mp_sub(a, b, c)) != MP_OKAY) |
|
| 1568 return res; |
|
| 1569 if((res = mp_mod(c, m, c)) != MP_OKAY) |
|
| 1570 return res; |
|
| 1571 |
|
| 1572 return MP_OKAY; |
|
| 1573 |
|
| 1574 } |
|
| 1575 |
|
| 1576 /* }}} */ |
|
| 1577 |
|
| 1578 /* {{{ mp_mulmod(a, b, m, c) */ |
|
| 1579 |
|
| 1580 /* |
|
| 1581 mp_mulmod(a, b, m, c) |
|
| 1582 |
|
| 1583 Compute c = (a * b) mod m |
|
| 1584 */ |
|
| 1585 |
|
| 1586 mp_err mp_mulmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c) |
|
| 1587 { |
|
| 1588 mp_err res; |
|
| 1589 |
|
| 1590 ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
|
| 1591 |
|
| 1592 if((res = mp_mul(a, b, c)) != MP_OKAY) |
|
| 1593 return res; |
|
| 1594 if((res = mp_mod(c, m, c)) != MP_OKAY) |
|
| 1595 return res; |
|
| 1596 |
|
| 1597 return MP_OKAY; |
|
| 1598 |
|
| 1599 } |
|
| 1600 |
|
| 1601 /* }}} */ |
|
| 1602 |
|
| 1603 /* {{{ mp_sqrmod(a, m, c) */ |
|
| 1604 |
|
| 1605 #if MP_SQUARE |
|
| 1606 mp_err mp_sqrmod(mp_int *a, mp_int *m, mp_int *c) |
|
| 1607 { |
|
| 1608 mp_err res; |
|
| 1609 |
|
| 1610 ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); |
|
| 1611 |
|
| 1612 if((res = mp_sqr(a, c)) != MP_OKAY) |
|
| 1613 return res; |
|
| 1614 if((res = mp_mod(c, m, c)) != MP_OKAY) |
|
| 1615 return res; |
|
| 1616 |
|
| 1617 return MP_OKAY; |
|
| 1618 |
|
| 1619 } /* end mp_sqrmod() */ |
|
| 1620 #endif |
|
| 1621 |
|
| 1622 /* }}} */ |
|
| 1623 |
|
| 1624 /* {{{ mp_exptmod(a, b, m, c) */ |
|
| 1625 |
|
| 1626 /* |
|
| 1627 mp_exptmod(a, b, m, c) |
|
| 1628 |
|
| 1629 Compute c = (a ** b) mod m. Uses a standard square-and-multiply |
|
| 1630 method with modular reductions at each step. (This is basically the |
|
| 1631 same code as mp_expt(), except for the addition of the reductions) |
|
| 1632 |
|
| 1633 The modular reductions are done using Barrett's algorithm (see |
|
| 1634 s_mp_reduce() below for details) |
|
| 1635 */ |
|
| 1636 |
|
| 1637 mp_err mp_exptmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c) |
|
| 1638 { |
|
| 1639 mp_int s, x, mu; |
|
| 1640 mp_err res; |
|
| 1641 mp_digit d, *db = DIGITS(b); |
|
| 1642 mp_size ub = USED(b); |
|
| 1643 int dig, bit; |
|
| 1644 |
|
| 1645 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
|
| 1646 |
|
| 1647 if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0) |
|
| 1648 return MP_RANGE; |
|
| 1649 |
|
| 1650 if((res = mp_init(&s)) != MP_OKAY) |
|
| 1651 return res; |
|
| 1652 if((res = mp_init_copy(&x, a)) != MP_OKAY) |
|
| 1653 goto X; |
|
| 1654 if((res = mp_mod(&x, m, &x)) != MP_OKAY || |
|
| 1655 (res = mp_init(&mu)) != MP_OKAY) |
|
| 1656 goto MU; |
|
| 1657 |
|
| 1658 mp_set(&s, 1); |
|
| 1659 |
|
| 1660 /* mu = b^2k / m */ |
|
| 1661 s_mp_add_d(&mu, 1); |
|
| 1662 s_mp_lshd(&mu, 2 * USED(m)); |
|
| 1663 if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY) |
|
| 1664 goto CLEANUP; |
|
| 1665 |
|
| 1666 /* Loop over digits of b in ascending order, except highest order */ |
|
| 1667 for(dig = 0; dig < (ub - 1); dig++) { |
|
| 1668 d = *db++; |
|
| 1669 |
|
| 1670 /* Loop over the bits of the lower-order digits */ |
|
| 1671 for(bit = 0; bit < DIGIT_BIT; bit++) { |
|
| 1672 if(d & 1) { |
|
| 1673 if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
|
| 1674 goto CLEANUP; |
|
| 1675 if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) |
|
| 1676 goto CLEANUP; |
|
| 1677 } |
|
| 1678 |
|
| 1679 d >>= 1; |
|
| 1680 |
|
| 1681 if((res = s_mp_sqr(&x)) != MP_OKAY) |
|
| 1682 goto CLEANUP; |
|
| 1683 if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) |
|
| 1684 goto CLEANUP; |
|
| 1685 } |
|
| 1686 } |
|
| 1687 |
|
| 1688 /* Now do the last digit... */ |
|
| 1689 d = *db; |
|
| 1690 |
|
| 1691 while(d) { |
|
| 1692 if(d & 1) { |
|
| 1693 if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
|
| 1694 goto CLEANUP; |
|
| 1695 if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) |
|
| 1696 goto CLEANUP; |
|
| 1697 } |
|
| 1698 |
|
| 1699 d >>= 1; |
|
| 1700 |
|
| 1701 if((res = s_mp_sqr(&x)) != MP_OKAY) |
|
| 1702 goto CLEANUP; |
|
| 1703 if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) |
|
| 1704 goto CLEANUP; |
|
| 1705 } |
|
| 1706 |
|
| 1707 s_mp_exch(&s, c); |
|
| 1708 |
|
| 1709 CLEANUP: |
|
| 1710 mp_clear(&mu); |
|
| 1711 MU: |
|
| 1712 mp_clear(&x); |
|
| 1713 X: |
|
| 1714 mp_clear(&s); |
|
| 1715 |
|
| 1716 return res; |
|
| 1717 |
|
| 1718 } /* end mp_exptmod() */ |
|
| 1719 |
|
| 1720 /* }}} */ |
|
| 1721 |
|
| 1722 /* {{{ mp_exptmod_d(a, d, m, c) */ |
|
| 1723 |
|
| 1724 mp_err mp_exptmod_d(mp_int *a, mp_digit d, mp_int *m, mp_int *c) |
|
| 1725 { |
|
| 1726 mp_int s, x; |
|
| 1727 mp_err res; |
|
| 1728 |
|
| 1729 ARGCHK(a != NULL && c != NULL, MP_BADARG); |
|
| 1730 |
|
| 1731 if((res = mp_init(&s)) != MP_OKAY) |
|
| 1732 return res; |
|
| 1733 if((res = mp_init_copy(&x, a)) != MP_OKAY) |
|
| 1734 goto X; |
|
| 1735 |
|
| 1736 mp_set(&s, 1); |
|
| 1737 |
|
| 1738 while(d != 0) { |
|
| 1739 if(d & 1) { |
|
| 1740 if((res = s_mp_mul(&s, &x)) != MP_OKAY || |
|
| 1741 (res = mp_mod(&s, m, &s)) != MP_OKAY) |
|
| 1742 goto CLEANUP; |
|
| 1743 } |
|
| 1744 |
|
| 1745 d /= 2; |
|
| 1746 |
|
| 1747 if((res = s_mp_sqr(&x)) != MP_OKAY || |
|
| 1748 (res = mp_mod(&x, m, &x)) != MP_OKAY) |
|
| 1749 goto CLEANUP; |
|
| 1750 } |
|
| 1751 |
|
| 1752 s_mp_exch(&s, c); |
|
| 1753 |
|
| 1754 CLEANUP: |
|
| 1755 mp_clear(&x); |
|
| 1756 X: |
|
| 1757 mp_clear(&s); |
|
| 1758 |
|
| 1759 return res; |
|
| 1760 |
|
| 1761 } /* end mp_exptmod_d() */ |
|
| 1762 |
|
| 1763 /* }}} */ |
|
| 1764 #endif /* if MP_MODARITH */ |
|
| 1765 |
|
| 1766 /* }}} */ |
|
| 1767 |
|
| 1768 /*------------------------------------------------------------------------*/ |
|
| 1769 /* {{{ Comparison functions */ |
|
| 1770 |
|
| 1771 /* {{{ mp_cmp_z(a) */ |
|
| 1772 |
|
| 1773 /* |
|
| 1774 mp_cmp_z(a) |
|
| 1775 |
|
| 1776 Compare a <=> 0. Returns <0 if a<0, 0 if a=0, >0 if a>0. |
|
| 1777 */ |
|
| 1778 |
|
| 1779 int mp_cmp_z(mp_int *a) |
|
| 1780 { |
|
| 1781 if(SIGN(a) == MP_NEG) |
|
| 1782 return MP_LT; |
|
| 1783 else if(USED(a) == 1 && DIGIT(a, 0) == 0) |
|
| 1784 return MP_EQ; |
|
| 1785 else |
|
| 1786 return MP_GT; |
|
| 1787 |
|
| 1788 } /* end mp_cmp_z() */ |
|
| 1789 |
|
| 1790 /* }}} */ |
|
| 1791 |
|
| 1792 /* {{{ mp_cmp_d(a, d) */ |
|
| 1793 |
|
| 1794 /* |
|
| 1795 mp_cmp_d(a, d) |
|
| 1796 |
|
| 1797 Compare a <=> d. Returns <0 if a<d, 0 if a=d, >0 if a>d |
|
| 1798 */ |
|
| 1799 |
|
| 1800 int mp_cmp_d(mp_int *a, mp_digit d) |
|
| 1801 { |
|
| 1802 ARGCHK(a != NULL, MP_EQ); |
|
| 1803 |
|
| 1804 if(SIGN(a) == MP_NEG) |
|
| 1805 return MP_LT; |
|
| 1806 |
|
| 1807 return s_mp_cmp_d(a, d); |
|
| 1808 |
|
| 1809 } /* end mp_cmp_d() */ |
|
| 1810 |
|
| 1811 /* }}} */ |
|
| 1812 |
|
| 1813 /* {{{ mp_cmp(a, b) */ |
|
| 1814 |
|
| 1815 int mp_cmp(mp_int *a, mp_int *b) |
|
| 1816 { |
|
| 1817 ARGCHK(a != NULL && b != NULL, MP_EQ); |
|
| 1818 |
|
| 1819 if(SIGN(a) == SIGN(b)) { |
|
| 1820 int mag; |
|
| 1821 |
|
| 1822 if((mag = s_mp_cmp(a, b)) == MP_EQ) |
|
| 1823 return MP_EQ; |
|
| 1824 |
|
| 1825 if(SIGN(a) == MP_ZPOS) |
|
| 1826 return mag; |
|
| 1827 else |
|
| 1828 return -mag; |
|
| 1829 |
|
| 1830 } else if(SIGN(a) == MP_ZPOS) { |
|
| 1831 return MP_GT; |
|
| 1832 } else { |
|
| 1833 return MP_LT; |
|
| 1834 } |
|
| 1835 |
|
| 1836 } /* end mp_cmp() */ |
|
| 1837 |
|
| 1838 /* }}} */ |
|
| 1839 |
|
| 1840 /* {{{ mp_cmp_mag(a, b) */ |
|
| 1841 |
|
| 1842 /* |
|
| 1843 mp_cmp_mag(a, b) |
|
| 1844 |
|
| 1845 Compares |a| <=> |b|, and returns an appropriate comparison result |
|
| 1846 */ |
|
| 1847 |
|
| 1848 int mp_cmp_mag(mp_int *a, mp_int *b) |
|
| 1849 { |
|
| 1850 ARGCHK(a != NULL && b != NULL, MP_EQ); |
|
| 1851 |
|
| 1852 return s_mp_cmp(a, b); |
|
| 1853 |
|
| 1854 } /* end mp_cmp_mag() */ |
|
| 1855 |
|
| 1856 /* }}} */ |
|
| 1857 |
|
| 1858 /* {{{ mp_cmp_int(a, z) */ |
|
| 1859 |
|
| 1860 /* |
|
| 1861 This just converts z to an mp_int, and uses the existing comparison |
|
| 1862 routines. This is sort of inefficient, but it's not clear to me how |
|
| 1863 frequently this wil get used anyway. For small positive constants, |
|
| 1864 you can always use mp_cmp_d(), and for zero, there is mp_cmp_z(). |
|
| 1865 */ |
|
| 1866 int mp_cmp_int(mp_int *a, long z) |
|
| 1867 { |
|
| 1868 mp_int tmp; |
|
| 1869 int out; |
|
| 1870 |
|
| 1871 ARGCHK(a != NULL, MP_EQ); |
|
| 1872 |
|
| 1873 mp_init(&tmp); mp_set_int(&tmp, z); |
|
| 1874 out = mp_cmp(a, &tmp); |
|
| 1875 mp_clear(&tmp); |
|
| 1876 |
|
| 1877 return out; |
|
| 1878 |
|
| 1879 } /* end mp_cmp_int() */ |
|
| 1880 |
|
| 1881 /* }}} */ |
|
| 1882 |
|
| 1883 /* {{{ mp_isodd(a) */ |
|
| 1884 |
|
| 1885 /* |
|
| 1886 mp_isodd(a) |
|
| 1887 |
|
| 1888 Returns a true (non-zero) value if a is odd, false (zero) otherwise. |
|
| 1889 */ |
|
| 1890 int mp_isodd(mp_int *a) |
|
| 1891 { |
|
| 1892 ARGCHK(a != NULL, 0); |
|
| 1893 |
|
| 1894 return (DIGIT(a, 0) & 1); |
|
| 1895 |
|
| 1896 } /* end mp_isodd() */ |
|
| 1897 |
|
| 1898 /* }}} */ |
|
| 1899 |
|
| 1900 /* {{{ mp_iseven(a) */ |
|
| 1901 |
|
| 1902 int mp_iseven(mp_int *a) |
|
| 1903 { |
|
| 1904 return !mp_isodd(a); |
|
| 1905 |
|
| 1906 } /* end mp_iseven() */ |
|
| 1907 |
|
| 1908 /* }}} */ |
|
| 1909 |
|
| 1910 /* }}} */ |
|
| 1911 |
|
| 1912 /*------------------------------------------------------------------------*/ |
|
| 1913 /* {{{ Number theoretic functions */ |
|
| 1914 |
|
| 1915 #if MP_NUMTH |
|
| 1916 /* {{{ mp_gcd(a, b, c) */ |
|
| 1917 |
|
| 1918 /* |
|
| 1919 Like the old mp_gcd() function, except computes the GCD using the |
|
| 1920 binary algorithm due to Josef Stein in 1961 (via Knuth). |
|
| 1921 */ |
|
| 1922 mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c) |
|
| 1923 { |
|
| 1924 mp_err res; |
|
| 1925 mp_int u, v, t; |
|
| 1926 mp_size k = 0; |
|
| 1927 |
|
| 1928 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
|
| 1929 |
|
| 1930 if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ) |
|
| 1931 return MP_RANGE; |
|
| 1932 if(mp_cmp_z(a) == MP_EQ) { |
|
| 1933 if((res = mp_copy(b, c)) != MP_OKAY) |
|
| 1934 return res; |
|
| 1935 SIGN(c) = MP_ZPOS; return MP_OKAY; |
|
| 1936 } else if(mp_cmp_z(b) == MP_EQ) { |
|
| 1937 if((res = mp_copy(a, c)) != MP_OKAY) |
|
| 1938 return res; |
|
| 1939 SIGN(c) = MP_ZPOS; return MP_OKAY; |
|
| 1940 } |
|
| 1941 |
|
| 1942 if((res = mp_init(&t)) != MP_OKAY) |
|
| 1943 return res; |
|
| 1944 if((res = mp_init_copy(&u, a)) != MP_OKAY) |
|
| 1945 goto U; |
|
| 1946 if((res = mp_init_copy(&v, b)) != MP_OKAY) |
|
| 1947 goto V; |
|
| 1948 |
|
| 1949 SIGN(&u) = MP_ZPOS; |
|
| 1950 SIGN(&v) = MP_ZPOS; |
|
| 1951 |
|
| 1952 /* Divide out common factors of 2 until at least 1 of a, b is even */ |
|
| 1953 while(mp_iseven(&u) && mp_iseven(&v)) { |
|
| 1954 s_mp_div_2(&u); |
|
| 1955 s_mp_div_2(&v); |
|
| 1956 ++k; |
|
| 1957 } |
|
| 1958 |
|
| 1959 /* Initialize t */ |
|
| 1960 if(mp_isodd(&u)) { |
|
| 1961 if((res = mp_copy(&v, &t)) != MP_OKAY) |
|
| 1962 goto CLEANUP; |
|
| 1963 |
|
| 1964 /* t = -v */ |
|
| 1965 if(SIGN(&v) == MP_ZPOS) |
|
| 1966 SIGN(&t) = MP_NEG; |
|
| 1967 else |
|
| 1968 SIGN(&t) = MP_ZPOS; |
|
| 1969 |
|
| 1970 } else { |
|
| 1971 if((res = mp_copy(&u, &t)) != MP_OKAY) |
|
| 1972 goto CLEANUP; |
|
| 1973 |
|
| 1974 } |
|
| 1975 |
|
| 1976 for(;;) { |
|
| 1977 while(mp_iseven(&t)) { |
|
| 1978 s_mp_div_2(&t); |
|
| 1979 } |
|
| 1980 |
|
| 1981 if(mp_cmp_z(&t) == MP_GT) { |
|
| 1982 if((res = mp_copy(&t, &u)) != MP_OKAY) |
|
| 1983 goto CLEANUP; |
|
| 1984 |
|
| 1985 } else { |
|
| 1986 if((res = mp_copy(&t, &v)) != MP_OKAY) |
|
| 1987 goto CLEANUP; |
|
| 1988 |
|
| 1989 /* v = -t */ |
|
| 1990 if(SIGN(&t) == MP_ZPOS) |
|
| 1991 SIGN(&v) = MP_NEG; |
|
| 1992 else |
|
| 1993 SIGN(&v) = MP_ZPOS; |
|
| 1994 } |
|
| 1995 |
|
| 1996 if((res = mp_sub(&u, &v, &t)) != MP_OKAY) |
|
| 1997 goto CLEANUP; |
|
| 1998 |
|
| 1999 if(s_mp_cmp_d(&t, 0) == MP_EQ) |
|
| 2000 break; |
|
| 2001 } |
|
| 2002 |
|
| 2003 s_mp_2expt(&v, k); /* v = 2^k */ |
|
| 2004 res = mp_mul(&u, &v, c); /* c = u * v */ |
|
| 2005 |
|
| 2006 CLEANUP: |
|
| 2007 mp_clear(&v); |
|
| 2008 V: |
|
| 2009 mp_clear(&u); |
|
| 2010 U: |
|
| 2011 mp_clear(&t); |
|
| 2012 |
|
| 2013 return res; |
|
| 2014 |
|
| 2015 } /* end mp_bgcd() */ |
|
| 2016 |
|
| 2017 /* }}} */ |
|
| 2018 |
|
| 2019 /* {{{ mp_lcm(a, b, c) */ |
|
| 2020 |
|
| 2021 /* We compute the least common multiple using the rule: |
|
| 2022 |
|
| 2023 ab = [a, b](a, b) |
|
| 2024 |
|
| 2025 ... by computing the product, and dividing out the gcd. |
|
| 2026 */ |
|
| 2027 |
|
| 2028 mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c) |
|
| 2029 { |
|
| 2030 mp_int gcd, prod; |
|
| 2031 mp_err res; |
|
| 2032 |
|
| 2033 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
|
| 2034 |
|
| 2035 /* Set up temporaries */ |
|
| 2036 if((res = mp_init(&gcd)) != MP_OKAY) |
|
| 2037 return res; |
|
| 2038 if((res = mp_init(&prod)) != MP_OKAY) |
|
| 2039 goto GCD; |
|
| 2040 |
|
| 2041 if((res = mp_mul(a, b, &prod)) != MP_OKAY) |
|
| 2042 goto CLEANUP; |
|
| 2043 if((res = mp_gcd(a, b, &gcd)) != MP_OKAY) |
|
| 2044 goto CLEANUP; |
|
| 2045 |
|
| 2046 res = mp_div(&prod, &gcd, c, NULL); |
|
| 2047 |
|
| 2048 CLEANUP: |
|
| 2049 mp_clear(&prod); |
|
| 2050 GCD: |
|
| 2051 mp_clear(&gcd); |
|
| 2052 |
|
| 2053 return res; |
|
| 2054 |
|
| 2055 } /* end mp_lcm() */ |
|
| 2056 |
|
| 2057 /* }}} */ |
|
| 2058 |
|
| 2059 /* {{{ mp_xgcd(a, b, g, x, y) */ |
|
| 2060 |
|
| 2061 /* |
|
| 2062 mp_xgcd(a, b, g, x, y) |
|
| 2063 |
|
| 2064 Compute g = (a, b) and values x and y satisfying Bezout's identity |
|
| 2065 (that is, ax + by = g). This uses the extended binary GCD algorithm |
|
| 2066 based on the Stein algorithm used for mp_gcd() |
|
| 2067 */ |
|
| 2068 |
|
| 2069 mp_err mp_xgcd(mp_int *a, mp_int *b, mp_int *g, mp_int *x, mp_int *y) |
|
| 2070 { |
|
| 2071 mp_int gx, xc, yc, u, v, A, B, C, D; |
|
| 2072 mp_int *clean[9]; |
|
| 2073 mp_err res; |
|
| 2074 int last = -1; |
|
| 2075 |
|
| 2076 if(mp_cmp_z(b) == 0) |
|
| 2077 return MP_RANGE; |
|
| 2078 |
|
| 2079 /* Initialize all these variables we need */ |
|
| 2080 if((res = mp_init(&u)) != MP_OKAY) goto CLEANUP; |
|
| 2081 clean[++last] = &u; |
|
| 2082 if((res = mp_init(&v)) != MP_OKAY) goto CLEANUP; |
|
| 2083 clean[++last] = &v; |
|
| 2084 if((res = mp_init(&gx)) != MP_OKAY) goto CLEANUP; |
|
| 2085 clean[++last] = &gx; |
|
| 2086 if((res = mp_init(&A)) != MP_OKAY) goto CLEANUP; |
|
| 2087 clean[++last] = &A; |
|
| 2088 if((res = mp_init(&B)) != MP_OKAY) goto CLEANUP; |
|
| 2089 clean[++last] = &B; |
|
| 2090 if((res = mp_init(&C)) != MP_OKAY) goto CLEANUP; |
|
| 2091 clean[++last] = &C; |
|
| 2092 if((res = mp_init(&D)) != MP_OKAY) goto CLEANUP; |
|
| 2093 clean[++last] = &D; |
|
| 2094 if((res = mp_init_copy(&xc, a)) != MP_OKAY) goto CLEANUP; |
|
| 2095 clean[++last] = &xc; |
|
| 2096 mp_abs(&xc, &xc); |
|
| 2097 if((res = mp_init_copy(&yc, b)) != MP_OKAY) goto CLEANUP; |
|
| 2098 clean[++last] = &yc; |
|
| 2099 mp_abs(&yc, &yc); |
|
| 2100 |
|
| 2101 mp_set(&gx, 1); |
|
| 2102 |
|
| 2103 /* Divide by two until at least one of them is even */ |
|
| 2104 while(mp_iseven(&xc) && mp_iseven(&yc)) { |
|
| 2105 s_mp_div_2(&xc); |
|
| 2106 s_mp_div_2(&yc); |
|
| 2107 if((res = s_mp_mul_2(&gx)) != MP_OKAY) |
|
| 2108 goto CLEANUP; |
|
| 2109 } |
|
| 2110 |
|
| 2111 mp_copy(&xc, &u); |
|
| 2112 mp_copy(&yc, &v); |
|
| 2113 mp_set(&A, 1); mp_set(&D, 1); |
|
| 2114 |
|
| 2115 /* Loop through binary GCD algorithm */ |
|
| 2116 for(;;) { |
|
| 2117 while(mp_iseven(&u)) { |
|
| 2118 s_mp_div_2(&u); |
|
| 2119 |
|
| 2120 if(mp_iseven(&A) && mp_iseven(&B)) { |
|
| 2121 s_mp_div_2(&A); s_mp_div_2(&B); |
|
| 2122 } else { |
|
| 2123 if((res = mp_add(&A, &yc, &A)) != MP_OKAY) goto CLEANUP; |
|
| 2124 s_mp_div_2(&A); |
|
| 2125 if((res = mp_sub(&B, &xc, &B)) != MP_OKAY) goto CLEANUP; |
|
| 2126 s_mp_div_2(&B); |
|
| 2127 } |
|
| 2128 } |
|
| 2129 |
|
| 2130 while(mp_iseven(&v)) { |
|
| 2131 s_mp_div_2(&v); |
|
| 2132 |
|
| 2133 if(mp_iseven(&C) && mp_iseven(&D)) { |
|
| 2134 s_mp_div_2(&C); s_mp_div_2(&D); |
|
| 2135 } else { |
|
| 2136 if((res = mp_add(&C, &yc, &C)) != MP_OKAY) goto CLEANUP; |
|
| 2137 s_mp_div_2(&C); |
|
| 2138 if((res = mp_sub(&D, &xc, &D)) != MP_OKAY) goto CLEANUP; |
|
| 2139 s_mp_div_2(&D); |
|
| 2140 } |
|
| 2141 } |
|
| 2142 |
|
| 2143 if(mp_cmp(&u, &v) >= 0) { |
|
| 2144 if((res = mp_sub(&u, &v, &u)) != MP_OKAY) goto CLEANUP; |
|
| 2145 if((res = mp_sub(&A, &C, &A)) != MP_OKAY) goto CLEANUP; |
|
| 2146 if((res = mp_sub(&B, &D, &B)) != MP_OKAY) goto CLEANUP; |
|
| 2147 |
|
| 2148 } else { |
|
| 2149 if((res = mp_sub(&v, &u, &v)) != MP_OKAY) goto CLEANUP; |
|
| 2150 if((res = mp_sub(&C, &A, &C)) != MP_OKAY) goto CLEANUP; |
|
| 2151 if((res = mp_sub(&D, &B, &D)) != MP_OKAY) goto CLEANUP; |
|
| 2152 |
|
| 2153 } |
|
| 2154 |
|
| 2155 /* If we're done, copy results to output */ |
|
| 2156 if(mp_cmp_z(&u) == 0) { |
|
| 2157 if(x) |
|
| 2158 if((res = mp_copy(&C, x)) != MP_OKAY) goto CLEANUP; |
|
| 2159 |
|
| 2160 if(y) |
|
| 2161 if((res = mp_copy(&D, y)) != MP_OKAY) goto CLEANUP; |
|
| 2162 |
|
| 2163 if(g) |
|
| 2164 if((res = mp_mul(&gx, &v, g)) != MP_OKAY) goto CLEANUP; |
|
| 2165 |
|
| 2166 break; |
|
| 2167 } |
|
| 2168 } |
|
| 2169 |
|
| 2170 CLEANUP: |
|
| 2171 while(last >= 0) |
|
| 2172 mp_clear(clean[last--]); |
|
| 2173 |
|
| 2174 return res; |
|
| 2175 |
|
| 2176 } /* end mp_xgcd() */ |
|
| 2177 |
|
| 2178 /* }}} */ |
|
| 2179 |
|
| 2180 /* {{{ mp_invmod(a, m, c) */ |
|
| 2181 |
|
| 2182 /* |
|
| 2183 mp_invmod(a, m, c) |
|
| 2184 |
|
| 2185 Compute c = a^-1 (mod m), if there is an inverse for a (mod m). |
|
| 2186 This is equivalent to the question of whether (a, m) = 1. If not, |
|
| 2187 MP_UNDEF is returned, and there is no inverse. |
|
| 2188 */ |
|
| 2189 |
|
| 2190 mp_err mp_invmod(mp_int *a, mp_int *m, mp_int *c) |
|
| 2191 { |
|
| 2192 mp_int g, x; |
|
| 2193 mp_sign sa; |
|
| 2194 mp_err res; |
|
| 2195 |
|
| 2196 ARGCHK(a && m && c, MP_BADARG); |
|
| 2197 |
|
| 2198 if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) |
|
| 2199 return MP_RANGE; |
|
| 2200 |
|
| 2201 sa = SIGN(a); |
|
| 2202 |
|
| 2203 if((res = mp_init(&g)) != MP_OKAY) |
|
| 2204 return res; |
|
| 2205 if((res = mp_init(&x)) != MP_OKAY) |
|
| 2206 goto X; |
|
| 2207 |
|
| 2208 if((res = mp_xgcd(a, m, &g, &x, NULL)) != MP_OKAY) |
|
| 2209 goto CLEANUP; |
|
| 2210 |
|
| 2211 if(mp_cmp_d(&g, 1) != MP_EQ) { |
|
| 2212 res = MP_UNDEF; |
|
| 2213 goto CLEANUP; |
|
| 2214 } |
|
| 2215 |
|
| 2216 res = mp_mod(&x, m, c); |
|
| 2217 SIGN(c) = sa; |
|
| 2218 |
|
| 2219 CLEANUP: |
|
| 2220 mp_clear(&x); |
|
| 2221 X: |
|
| 2222 mp_clear(&g); |
|
| 2223 |
|
| 2224 return res; |
|
| 2225 |
|
| 2226 } /* end mp_invmod() */ |
|
| 2227 |
|
| 2228 /* }}} */ |
|
| 2229 #endif /* if MP_NUMTH */ |
|
| 2230 |
|
| 2231 /* }}} */ |
|
| 2232 |
|
| 2233 /*------------------------------------------------------------------------*/ |
|
| 2234 /* {{{ mp_print(mp, ofp) */ |
|
| 2235 |
|
| 2236 #if MP_IOFUNC |
|
| 2237 /* |
|
| 2238 mp_print(mp, ofp) |
|
| 2239 |
|
| 2240 Print a textual representation of the given mp_int on the output |
|
| 2241 stream 'ofp'. Output is generated using the internal radix. |
|
| 2242 */ |
|
| 2243 |
|
| 2244 void mp_print(mp_int *mp, FILE *ofp) |
|
| 2245 { |
|
| 2246 int ix; |
|
| 2247 |
|
| 2248 if(mp == NULL || ofp == NULL) |
|
| 2249 return; |
|
| 2250 |
|
| 2251 fputc((SIGN(mp) == MP_NEG) ? '-' : '+', ofp); |
|
| 2252 |
|
| 2253 for(ix = USED(mp) - 1; ix >= 0; ix--) { |
|
| 2254 fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix)); |
|
| 2255 } |
|
| 2256 |
|
| 2257 } /* end mp_print() */ |
|
| 2258 |
|
| 2259 #endif /* if MP_IOFUNC */ |
|
| 2260 |
|
| 2261 /* }}} */ |
|
| 2262 |
|
| 2263 /*------------------------------------------------------------------------*/ |
|
| 2264 /* {{{ More I/O Functions */ |
|
| 2265 |
|
| 2266 /* {{{ mp_read_signed_bin(mp, str, len) */ |
|
| 2267 |
|
| 2268 /* |
|
| 2269 mp_read_signed_bin(mp, str, len) |
|
| 2270 |
|
| 2271 Read in a raw value (base 256) into the given mp_int |
|
| 2272 */ |
|
| 2273 |
|
| 2274 mp_err mp_read_signed_bin(mp_int *mp, unsigned char *str, int len) |
|
| 2275 { |
|
| 2276 mp_err res; |
|
| 2277 |
|
| 2278 ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); |
|
| 2279 |
|
| 2280 if((res = mp_read_unsigned_bin(mp, str + 1, len - 1)) == MP_OKAY) { |
|
| 2281 /* Get sign from first byte */ |
|
| 2282 if(str[0]) |
|
| 2283 SIGN(mp) = MP_NEG; |
|
| 2284 else |
|
| 2285 SIGN(mp) = MP_ZPOS; |
|
| 2286 } |
|
| 2287 |
|
| 2288 return res; |
|
| 2289 |
|
| 2290 } /* end mp_read_signed_bin() */ |
|
| 2291 |
|
| 2292 /* }}} */ |
|
| 2293 |
|
| 2294 /* {{{ mp_signed_bin_size(mp) */ |
|
| 2295 |
|
| 2296 int mp_signed_bin_size(mp_int *mp) |
|
| 2297 { |
|
| 2298 ARGCHK(mp != NULL, 0); |
|
| 2299 |
|
| 2300 return mp_unsigned_bin_size(mp) + 1; |
|
| 2301 |
|
| 2302 } /* end mp_signed_bin_size() */ |
|
| 2303 |
|
| 2304 /* }}} */ |
|
| 2305 |
|
| 2306 /* {{{ mp_to_signed_bin(mp, str) */ |
|
| 2307 |
|
| 2308 mp_err mp_to_signed_bin(mp_int *mp, unsigned char *str) |
|
| 2309 { |
|
| 2310 ARGCHK(mp != NULL && str != NULL, MP_BADARG); |
|
| 2311 |
|
| 2312 /* Caller responsible for allocating enough memory (use mp_raw_size(mp)) */ |
|
| 2313 str[0] = (char)SIGN(mp); |
|
| 2314 |
|
| 2315 return mp_to_unsigned_bin(mp, str + 1); |
|
| 2316 |
|
| 2317 } /* end mp_to_signed_bin() */ |
|
| 2318 |
|
| 2319 /* }}} */ |
|
| 2320 |
|
| 2321 /* {{{ mp_read_unsigned_bin(mp, str, len) */ |
|
| 2322 |
|
| 2323 /* |
|
| 2324 mp_read_unsigned_bin(mp, str, len) |
|
| 2325 |
|
| 2326 Read in an unsigned value (base 256) into the given mp_int |
|
| 2327 */ |
|
| 2328 |
|
| 2329 mp_err mp_read_unsigned_bin(mp_int *mp, unsigned char *str, int len) |
|
| 2330 { |
|
| 2331 int ix; |
|
| 2332 mp_err res; |
|
| 2333 |
|
| 2334 ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); |
|
| 2335 |
|
| 2336 mp_zero(mp); |
|
| 2337 |
|
| 2338 for(ix = 0; ix < len; ix++) { |
|
| 2339 if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY) |
|
| 2340 return res; |
|
| 2341 |
|
| 2342 if((res = mp_add_d(mp, str[ix], mp)) != MP_OKAY) |
|
| 2343 return res; |
|
| 2344 } |
|
| 2345 |
|
| 2346 return MP_OKAY; |
|
| 2347 |
|
| 2348 } /* end mp_read_unsigned_bin() */ |
|
| 2349 |
|
| 2350 /* }}} */ |
|
| 2351 |
|
| 2352 /* {{{ mp_unsigned_bin_size(mp) */ |
|
| 2353 |
|
| 2354 int mp_unsigned_bin_size(mp_int *mp) |
|
| 2355 { |
|
| 2356 mp_digit topdig; |
|
| 2357 int count; |
|
| 2358 |
|
| 2359 ARGCHK(mp != NULL, 0); |
|
| 2360 |
|
| 2361 /* Special case for the value zero */ |
|
| 2362 if(USED(mp) == 1 && DIGIT(mp, 0) == 0) |
|
| 2363 return 1; |
|
| 2364 |
|
| 2365 count = (USED(mp) - 1) * sizeof(mp_digit); |
|
| 2366 topdig = DIGIT(mp, USED(mp) - 1); |
|
| 2367 |
|
| 2368 while(topdig != 0) { |
|
| 2369 ++count; |
|
| 2370 topdig >>= CHAR_BIT; |
|
| 2371 } |
|
| 2372 |
|
| 2373 return count; |
|
| 2374 |
|
| 2375 } /* end mp_unsigned_bin_size() */ |
|
| 2376 |
|
| 2377 /* }}} */ |
|
| 2378 |
|
| 2379 /* {{{ mp_to_unsigned_bin(mp, str) */ |
|
| 2380 |
|
| 2381 mp_err mp_to_unsigned_bin(mp_int *mp, unsigned char *str) |
|
| 2382 { |
|
| 2383 mp_digit *dp, *end, d; |
|
| 2384 unsigned char *spos; |
|
| 2385 |
|
| 2386 ARGCHK(mp != NULL && str != NULL, MP_BADARG); |
|
| 2387 |
|
| 2388 dp = DIGITS(mp); |
|
| 2389 end = dp + USED(mp) - 1; |
|
| 2390 spos = str; |
|
| 2391 |
|
| 2392 /* Special case for zero, quick test */ |
|
| 2393 if(dp == end && *dp == 0) { |
|
| 2394 *str = '\0'; |
|
| 2395 return MP_OKAY; |
|
| 2396 } |
|
| 2397 |
|
| 2398 /* Generate digits in reverse order */ |
|
| 2399 while(dp < end) { |
|
| 2400 int ix; |
|
| 2401 |
|
| 2402 d = *dp; |
|
| 2403 for(ix = 0; ix < sizeof(mp_digit); ++ix) { |
|
| 2404 *spos = d & UCHAR_MAX; |
|
| 2405 d >>= CHAR_BIT; |
|
| 2406 ++spos; |
|
| 2407 } |
|
| 2408 |
|
| 2409 ++dp; |
|
| 2410 } |
|
| 2411 |
|
| 2412 /* Now handle last digit specially, high order zeroes are not written */ |
|
| 2413 d = *end; |
|
| 2414 while(d != 0) { |
|
| 2415 *spos = d & UCHAR_MAX; |
|
| 2416 d >>= CHAR_BIT; |
|
| 2417 ++spos; |
|
| 2418 } |
|
| 2419 |
|
| 2420 /* Reverse everything to get digits in the correct order */ |
|
| 2421 while(--spos > str) { |
|
| 2422 unsigned char t = *str; |
|
| 2423 *str = *spos; |
|
| 2424 *spos = t; |
|
| 2425 |
|
| 2426 ++str; |
|
| 2427 } |
|
| 2428 |
|
| 2429 return MP_OKAY; |
|
| 2430 |
|
| 2431 } /* end mp_to_unsigned_bin() */ |
|
| 2432 |
|
| 2433 /* }}} */ |
|
| 2434 |
|
| 2435 /* {{{ mp_count_bits(mp) */ |
|
| 2436 |
|
| 2437 int mp_count_bits(mp_int *mp) |
|
| 2438 { |
|
| 2439 int len; |
|
| 2440 mp_digit d; |
|
| 2441 |
|
| 2442 ARGCHK(mp != NULL, MP_BADARG); |
|
| 2443 |
|
| 2444 len = DIGIT_BIT * (USED(mp) - 1); |
|
| 2445 d = DIGIT(mp, USED(mp) - 1); |
|
| 2446 |
|
| 2447 while(d != 0) { |
|
| 2448 ++len; |
|
| 2449 d >>= 1; |
|
| 2450 } |
|
| 2451 |
|
| 2452 return len; |
|
| 2453 |
|
| 2454 } /* end mp_count_bits() */ |
|
| 2455 |
|
| 2456 /* }}} */ |
|
| 2457 |
|
| 2458 /* {{{ mp_read_radix(mp, str, radix) */ |
|
| 2459 |
|
| 2460 /* |
|
| 2461 mp_read_radix(mp, str, radix) |
|
| 2462 |
|
| 2463 Read an integer from the given string, and set mp to the resulting |
|
| 2464 value. The input is presumed to be in base 10. Leading non-digit |
|
| 2465 characters are ignored, and the function reads until a non-digit |
|
| 2466 character or the end of the string. |
|
| 2467 */ |
|
| 2468 |
|
| 2469 mp_err mp_read_radix(mp_int *mp, unsigned char *str, int radix) |
|
| 2470 { |
|
| 2471 int ix = 0, val = 0; |
|
| 2472 mp_err res; |
|
| 2473 mp_sign sig = MP_ZPOS; |
|
| 2474 |
|
| 2475 ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX, |
|
| 2476 MP_BADARG); |
|
| 2477 |
|
| 2478 mp_zero(mp); |
|
| 2479 |
|
| 2480 /* Skip leading non-digit characters until a digit or '-' or '+' */ |
|
| 2481 while(str[ix] && |
|
| 2482 (s_mp_tovalue(str[ix], radix) < 0) && |
|
| 2483 str[ix] != '-' && |
|
| 2484 str[ix] != '+') { |
|
| 2485 ++ix; |
|
| 2486 } |
|
| 2487 |
|
| 2488 if(str[ix] == '-') { |
|
| 2489 sig = MP_NEG; |
|
| 2490 ++ix; |
|
| 2491 } else if(str[ix] == '+') { |
|
| 2492 sig = MP_ZPOS; /* this is the default anyway... */ |
|
| 2493 ++ix; |
|
| 2494 } |
|
| 2495 |
|
| 2496 while((val = s_mp_tovalue(str[ix], radix)) >= 0) { |
|
| 2497 if((res = s_mp_mul_d(mp, radix)) != MP_OKAY) |
|
| 2498 return res; |
|
| 2499 if((res = s_mp_add_d(mp, val)) != MP_OKAY) |
|
| 2500 return res; |
|
| 2501 ++ix; |
|
| 2502 } |
|
| 2503 |
|
| 2504 if(s_mp_cmp_d(mp, 0) == MP_EQ) |
|
| 2505 SIGN(mp) = MP_ZPOS; |
|
| 2506 else |
|
| 2507 SIGN(mp) = sig; |
|
| 2508 |
|
| 2509 return MP_OKAY; |
|
| 2510 |
|
| 2511 } /* end mp_read_radix() */ |
|
| 2512 |
|
| 2513 /* }}} */ |
|
| 2514 |
|
| 2515 /* {{{ mp_radix_size(mp, radix) */ |
|
| 2516 |
|
| 2517 int mp_radix_size(mp_int *mp, int radix) |
|
| 2518 { |
|
| 2519 int len; |
|
| 2520 ARGCHK(mp != NULL, 0); |
|
| 2521 |
|
| 2522 len = s_mp_outlen(mp_count_bits(mp), radix) + 1; /* for NUL terminator */ |
|
| 2523 |
|
| 2524 if(mp_cmp_z(mp) < 0) |
|
| 2525 ++len; /* for sign */ |
|
| 2526 |
|
| 2527 return len; |
|
| 2528 |
|
| 2529 } /* end mp_radix_size() */ |
|
| 2530 |
|
| 2531 /* }}} */ |
|
| 2532 |
|
| 2533 /* {{{ mp_value_radix_size(num, qty, radix) */ |
|
| 2534 |
|
| 2535 /* num = number of digits |
|
| 2536 qty = number of bits per digit |
|
| 2537 radix = target base |
|
| 2538 |
|
| 2539 Return the number of digits in the specified radix that would be |
|
| 2540 needed to express 'num' digits of 'qty' bits each. |
|
| 2541 */ |
|
| 2542 int mp_value_radix_size(int num, int qty, int radix) |
|
| 2543 { |
|
| 2544 ARGCHK(num >= 0 && qty > 0 && radix >= 2 && radix <= MAX_RADIX, 0); |
|
| 2545 |
|
| 2546 return s_mp_outlen(num * qty, radix); |
|
| 2547 |
|
| 2548 } /* end mp_value_radix_size() */ |
|
| 2549 |
|
| 2550 /* }}} */ |
|
| 2551 |
|
| 2552 /* {{{ mp_toradix(mp, str, radix) */ |
|
| 2553 |
|
| 2554 mp_err mp_toradix(mp_int *mp, unsigned char *str, int radix) |
|
| 2555 { |
|
| 2556 int ix, pos = 0; |
|
| 2557 |
|
| 2558 ARGCHK(mp != NULL && str != NULL, MP_BADARG); |
|
| 2559 ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE); |
|
| 2560 |
|
| 2561 if(mp_cmp_z(mp) == MP_EQ) { |
|
| 2562 str[0] = '0'; |
|
| 2563 str[1] = '\0'; |
|
| 2564 } else { |
|
| 2565 mp_err res; |
|
| 2566 mp_int tmp; |
|
| 2567 mp_sign sgn; |
|
| 2568 mp_digit rem, rdx = (mp_digit)radix; |
|
| 2569 char ch; |
|
| 2570 |
|
| 2571 if((res = mp_init_copy(&tmp, mp)) != MP_OKAY) |
|
| 2572 return res; |
|
| 2573 |
|
| 2574 /* Save sign for later, and take absolute value */ |
|
| 2575 sgn = SIGN(&tmp); SIGN(&tmp) = MP_ZPOS; |
|
| 2576 |
|
| 2577 /* Generate output digits in reverse order */ |
|
| 2578 while(mp_cmp_z(&tmp) != 0) { |
|
| 2579 if((res = s_mp_div_d(&tmp, rdx, &rem)) != MP_OKAY) { |
|
| 2580 mp_clear(&tmp); |
|
| 2581 return res; |
|
| 2582 } |
|
| 2583 |
|
| 2584 /* Generate digits, use capital letters */ |
|
| 2585 ch = s_mp_todigit(rem, radix, 0); |
|
| 2586 |
|
| 2587 str[pos++] = ch; |
|
| 2588 } |
|
| 2589 |
|
| 2590 /* Add - sign if original value was negative */ |
|
| 2591 if(sgn == MP_NEG) |
|
| 2592 str[pos++] = '-'; |
|
| 2593 |
|
| 2594 /* Add trailing NUL to end the string */ |
|
| 2595 str[pos--] = '\0'; |
|
| 2596 |
|
| 2597 /* Reverse the digits and sign indicator */ |
|
| 2598 ix = 0; |
|
| 2599 while(ix < pos) { |
|
| 2600 char tmp = str[ix]; |
|
| 2601 |
|
| 2602 str[ix] = str[pos]; |
|
| 2603 str[pos] = tmp; |
|
| 2604 ++ix; |
|
| 2605 --pos; |
|
| 2606 } |
|
| 2607 |
|
| 2608 mp_clear(&tmp); |
|
| 2609 } |
|
| 2610 |
|
| 2611 return MP_OKAY; |
|
| 2612 |
|
| 2613 } /* end mp_toradix() */ |
|
| 2614 |
|
| 2615 /* }}} */ |
|
| 2616 |
|
| 2617 /* {{{ mp_char2value(ch, r) */ |
|
| 2618 |
|
| 2619 int mp_char2value(char ch, int r) |
|
| 2620 { |
|
| 2621 return s_mp_tovalue(ch, r); |
|
| 2622 |
|
| 2623 } /* end mp_tovalue() */ |
|
| 2624 |
|
| 2625 /* }}} */ |
|
| 2626 |
|
| 2627 /* }}} */ |
|
| 2628 |
|
| 2629 /* {{{ mp_strerror(ec) */ |
|
| 2630 |
|
| 2631 /* |
|
| 2632 mp_strerror(ec) |
|
| 2633 |
|
| 2634 Return a string describing the meaning of error code 'ec'. The |
|
| 2635 string returned is allocated in static memory, so the caller should |
|
| 2636 not attempt to modify or free the memory associated with this |
|
| 2637 string. |
|
| 2638 */ |
|
| 2639 const char *mp_strerror(mp_err ec) |
|
| 2640 { |
|
| 2641 int aec = (ec < 0) ? -ec : ec; |
|
| 2642 |
|
| 2643 /* Code values are negative, so the senses of these comparisons |
|
| 2644 are accurate */ |
|
| 2645 if(ec < MP_LAST_CODE || ec > MP_OKAY) { |
|
| 2646 return mp_err_string[0]; /* unknown error code */ |
|
| 2647 } else { |
|
| 2648 return mp_err_string[aec + 1]; |
|
| 2649 } |
|
| 2650 |
|
| 2651 } /* end mp_strerror() */ |
|
| 2652 |
|
| 2653 /* }}} */ |
|
| 2654 |
|
| 2655 /*========================================================================*/ |
|
| 2656 /*------------------------------------------------------------------------*/ |
|
| 2657 /* Static function definitions (internal use only) */ |
|
| 2658 |
|
| 2659 /* {{{ Memory management */ |
|
| 2660 |
|
| 2661 /* {{{ s_mp_grow(mp, min) */ |
|
| 2662 |
|
| 2663 /* Make sure there are at least 'min' digits allocated to mp */ |
|
| 2664 mp_err s_mp_grow(mp_int *mp, mp_size min) |
|
| 2665 { |
|
| 2666 if(min > ALLOC(mp)) { |
|
| 2667 mp_digit *tmp; |
|
| 2668 |
|
| 2669 /* Set min to next nearest default precision block size */ |
|
| 2670 min = ((min + (s_mp_defprec - 1)) / s_mp_defprec) * s_mp_defprec; |
|
| 2671 |
|
| 2672 if((tmp = s_mp_alloc(min, sizeof(mp_digit))) == NULL) |
|
| 2673 return MP_MEM; |
|
| 2674 |
|
| 2675 s_mp_copy(DIGITS(mp), tmp, USED(mp)); |
|
| 2676 |
|
| 2677 #if MP_CRYPTO |
|
| 2678 s_mp_setz(DIGITS(mp), ALLOC(mp)); |
|
| 2679 #endif |
|
| 2680 s_mp_free(DIGITS(mp)); |
|
| 2681 DIGITS(mp) = tmp; |
|
| 2682 ALLOC(mp) = min; |
|
| 2683 } |
|
| 2684 |
|
| 2685 return MP_OKAY; |
|
| 2686 |
|
| 2687 } /* end s_mp_grow() */ |
|
| 2688 |
|
| 2689 /* }}} */ |
|
| 2690 |
|
| 2691 /* {{{ s_mp_pad(mp, min) */ |
|
| 2692 |
|
| 2693 /* Make sure the used size of mp is at least 'min', growing if needed */ |
|
| 2694 mp_err s_mp_pad(mp_int *mp, mp_size min) |
|
| 2695 { |
|
| 2696 if(min > USED(mp)) { |
|
| 2697 mp_err res; |
|
| 2698 |
|
| 2699 /* Make sure there is room to increase precision */ |
|
| 2700 if(min > ALLOC(mp) && (res = s_mp_grow(mp, min)) != MP_OKAY) |
|
| 2701 return res; |
|
| 2702 |
|
| 2703 /* Increase precision; should already be 0-filled */ |
|
| 2704 USED(mp) = min; |
|
| 2705 } |
|
| 2706 |
|
| 2707 return MP_OKAY; |
|
| 2708 |
|
| 2709 } /* end s_mp_pad() */ |
|
| 2710 |
|
| 2711 /* }}} */ |
|
| 2712 |
|
| 2713 /* {{{ s_mp_setz(dp, count) */ |
|
| 2714 |
|
| 2715 #if MP_MACRO == 0 |
|
| 2716 /* Set 'count' digits pointed to by dp to be zeroes */ |
|
| 2717 void s_mp_setz(mp_digit *dp, mp_size count) |
|
| 2718 { |
|
| 2719 #if MP_MEMSET == 0 |
|
| 2720 int ix; |
|
| 2721 |
|
| 2722 for(ix = 0; ix < count; ix++) |
|
| 2723 dp[ix] = 0; |
|
| 2724 #else |
|
| 2725 memset(dp, 0, count * sizeof(mp_digit)); |
|
| 2726 #endif |
|
| 2727 |
|
| 2728 } /* end s_mp_setz() */ |
|
| 2729 #endif |
|
| 2730 |
|
| 2731 /* }}} */ |
|
| 2732 |
|
| 2733 /* {{{ s_mp_copy(sp, dp, count) */ |
|
| 2734 |
|
| 2735 #if MP_MACRO == 0 |
|
| 2736 /* Copy 'count' digits from sp to dp */ |
|
| 2737 void s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count) |
|
| 2738 { |
|
| 2739 #if MP_MEMCPY == 0 |
|
| 2740 int ix; |
|
| 2741 |
|
| 2742 for(ix = 0; ix < count; ix++) |
|
| 2743 dp[ix] = sp[ix]; |
|
| 2744 #else |
|
| 2745 memcpy(dp, sp, count * sizeof(mp_digit)); |
|
| 2746 #endif |
|
| 2747 |
|
| 2748 } /* end s_mp_copy() */ |
|
| 2749 #endif |
|
| 2750 |
|
| 2751 /* }}} */ |
|
| 2752 |
|
| 2753 /* {{{ s_mp_alloc(nb, ni) */ |
|
| 2754 |
|
| 2755 #if MP_MACRO == 0 |
|
| 2756 /* Allocate ni records of nb bytes each, and return a pointer to that */ |
|
| 2757 void *s_mp_alloc(size_t nb, size_t ni) |
|
| 2758 { |
|
| 2759 return calloc(nb, ni); |
|
| 2760 |
|
| 2761 } /* end s_mp_alloc() */ |
|
| 2762 #endif |
|
| 2763 |
|
| 2764 /* }}} */ |
|
| 2765 |
|
| 2766 /* {{{ s_mp_free(ptr) */ |
|
| 2767 |
|
| 2768 #if MP_MACRO == 0 |
|
| 2769 /* Free the memory pointed to by ptr */ |
|
| 2770 void s_mp_free(void *ptr) |
|
| 2771 { |
|
| 2772 if(ptr) |
|
| 2773 free(ptr); |
|
| 2774 |
|
| 2775 } /* end s_mp_free() */ |
|
| 2776 #endif |
|
| 2777 |
|
| 2778 /* }}} */ |
|
| 2779 |
|
| 2780 /* {{{ s_mp_clamp(mp) */ |
|
| 2781 |
|
| 2782 /* Remove leading zeroes from the given value */ |
|
| 2783 void s_mp_clamp(mp_int *mp) |
|
| 2784 { |
|
| 2785 mp_size du = USED(mp); |
|
| 2786 mp_digit *zp = DIGITS(mp) + du - 1; |
|
| 2787 |
|
| 2788 while(du > 1 && !*zp--) |
|
| 2789 --du; |
|
| 2790 |
|
| 2791 if(du == 1 && *zp == 0) |
|
| 2792 SIGN(mp) = MP_ZPOS; |
|
| 2793 |
|
| 2794 USED(mp) = du; |
|
| 2795 |
|
| 2796 } /* end s_mp_clamp() */ |
|
| 2797 |
|
| 2798 |
|
| 2799 /* }}} */ |
|
| 2800 |
|
| 2801 /* {{{ s_mp_exch(a, b) */ |
|
| 2802 |
|
| 2803 /* Exchange the data for a and b; (b, a) = (a, b) */ |
|
| 2804 void s_mp_exch(mp_int *a, mp_int *b) |
|
| 2805 { |
|
| 2806 mp_int tmp; |
|
| 2807 |
|
| 2808 tmp = *a; |
|
| 2809 *a = *b; |
|
| 2810 *b = tmp; |
|
| 2811 |
|
| 2812 } /* end s_mp_exch() */ |
|
| 2813 |
|
| 2814 /* }}} */ |
|
| 2815 |
|
| 2816 /* }}} */ |
|
| 2817 |
|
| 2818 /* {{{ Arithmetic helpers */ |
|
| 2819 |
|
| 2820 /* {{{ s_mp_lshd(mp, p) */ |
|
| 2821 |
|
| 2822 /* |
|
| 2823 Shift mp leftward by p digits, growing if needed, and zero-filling |
|
| 2824 the in-shifted digits at the right end. This is a convenient |
|
| 2825 alternative to multiplication by powers of the radix |
|
| 2826 */ |
|
| 2827 |
|
| 2828 mp_err s_mp_lshd(mp_int *mp, mp_size p) |
|
| 2829 { |
|
| 2830 mp_err res; |
|
| 2831 mp_size pos; |
|
| 2832 mp_digit *dp; |
|
| 2833 int ix; |
|
| 2834 |
|
| 2835 if(p == 0) |
|
| 2836 return MP_OKAY; |
|
| 2837 |
|
| 2838 if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY) |
|
| 2839 return res; |
|
| 2840 |
|
| 2841 pos = USED(mp) - 1; |
|
| 2842 dp = DIGITS(mp); |
|
| 2843 |
|
| 2844 /* Shift all the significant figures over as needed */ |
|
| 2845 for(ix = pos - p; ix >= 0; ix--) |
|
| 2846 dp[ix + p] = dp[ix]; |
|
| 2847 |
|
| 2848 /* Fill the bottom digits with zeroes */ |
|
| 2849 for(ix = 0; ix < p; ix++) |
|
| 2850 dp[ix] = 0; |
|
| 2851 |
|
| 2852 return MP_OKAY; |
|
| 2853 |
|
| 2854 } /* end s_mp_lshd() */ |
|
| 2855 |
|
| 2856 /* }}} */ |
|
| 2857 |
|
| 2858 /* {{{ s_mp_rshd(mp, p) */ |
|
| 2859 |
|
| 2860 /* |
|
| 2861 Shift mp rightward by p digits. Maintains the invariant that |
|
| 2862 digits above the precision are all zero. Digits shifted off the |
|
| 2863 end are lost. Cannot fail. |
|
| 2864 */ |
|
| 2865 |
|
| 2866 void s_mp_rshd(mp_int *mp, mp_size p) |
|
| 2867 { |
|
| 2868 mp_size ix; |
|
| 2869 mp_digit *dp; |
|
| 2870 |
|
| 2871 if(p == 0) |
|
| 2872 return; |
|
| 2873 |
|
| 2874 /* Shortcut when all digits are to be shifted off */ |
|
| 2875 if(p >= USED(mp)) { |
|
| 2876 s_mp_setz(DIGITS(mp), ALLOC(mp)); |
|
| 2877 USED(mp) = 1; |
|
| 2878 SIGN(mp) = MP_ZPOS; |
|
| 2879 return; |
|
| 2880 } |
|
| 2881 |
|
| 2882 /* Shift all the significant figures over as needed */ |
|
| 2883 dp = DIGITS(mp); |
|
| 2884 for(ix = p; ix < USED(mp); ix++) |
|
| 2885 dp[ix - p] = dp[ix]; |
|
| 2886 |
|
| 2887 /* Fill the top digits with zeroes */ |
|
| 2888 ix -= p; |
|
| 2889 while(ix < USED(mp)) |
|
| 2890 dp[ix++] = 0; |
|
| 2891 |
|
| 2892 /* Strip off any leading zeroes */ |
|
| 2893 s_mp_clamp(mp); |
|
| 2894 |
|
| 2895 } /* end s_mp_rshd() */ |
|
| 2896 |
|
| 2897 /* }}} */ |
|
| 2898 |
|
| 2899 /* {{{ s_mp_div_2(mp) */ |
|
| 2900 |
|
| 2901 /* Divide by two -- take advantage of radix properties to do it fast */ |
|
| 2902 void s_mp_div_2(mp_int *mp) |
|
| 2903 { |
|
| 2904 s_mp_div_2d(mp, 1); |
|
| 2905 |
|
| 2906 } /* end s_mp_div_2() */ |
|
| 2907 |
|
| 2908 /* }}} */ |
|
| 2909 |
|
| 2910 /* {{{ s_mp_mul_2(mp) */ |
|
| 2911 |
|
| 2912 mp_err s_mp_mul_2(mp_int *mp) |
|
| 2913 { |
|
| 2914 int ix; |
|
| 2915 mp_digit kin = 0, kout, *dp = DIGITS(mp); |
|
| 2916 mp_err res; |
|
| 2917 |
|
| 2918 /* Shift digits leftward by 1 bit */ |
|
| 2919 for(ix = 0; ix < USED(mp); ix++) { |
|
| 2920 kout = (dp[ix] >> (DIGIT_BIT - 1)) & 1; |
|
| 2921 dp[ix] = (dp[ix] << 1) | kin; |
|
| 2922 |
|
| 2923 kin = kout; |
|
| 2924 } |
|
| 2925 |
|
| 2926 /* Deal with rollover from last digit */ |
|
| 2927 if(kin) { |
|
| 2928 if(ix >= ALLOC(mp)) { |
|
| 2929 if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY) |
|
| 2930 return res; |
|
| 2931 dp = DIGITS(mp); |
|
| 2932 } |
|
| 2933 |
|
| 2934 dp[ix] = kin; |
|
| 2935 USED(mp) += 1; |
|
| 2936 } |
|
| 2937 |
|
| 2938 return MP_OKAY; |
|
| 2939 |
|
| 2940 } /* end s_mp_mul_2() */ |
|
| 2941 |
|
| 2942 /* }}} */ |
|
| 2943 |
|
| 2944 /* {{{ s_mp_mod_2d(mp, d) */ |
|
| 2945 |
|
| 2946 /* |
|
| 2947 Remainder the integer by 2^d, where d is a number of bits. This |
|
| 2948 amounts to a bitwise AND of the value, and does not require the full |
|
| 2949 division code |
|
| 2950 */ |
|
| 2951 void s_mp_mod_2d(mp_int *mp, mp_digit d) |
|
| 2952 { |
|
| 2953 unsigned int ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT); |
|
| 2954 unsigned int ix; |
|
| 2955 mp_digit dmask, *dp = DIGITS(mp); |
|
| 2956 |
|
| 2957 if(ndig >= USED(mp)) |
|
| 2958 return; |
|
| 2959 |
|
| 2960 /* Flush all the bits above 2^d in its digit */ |
|
| 2961 dmask = (1 << nbit) - 1; |
|
| 2962 dp[ndig] &= dmask; |
|
| 2963 |
|
| 2964 /* Flush all digits above the one with 2^d in it */ |
|
| 2965 for(ix = ndig + 1; ix < USED(mp); ix++) |
|
| 2966 dp[ix] = 0; |
|
| 2967 |
|
| 2968 s_mp_clamp(mp); |
|
| 2969 |
|
| 2970 } /* end s_mp_mod_2d() */ |
|
| 2971 |
|
| 2972 /* }}} */ |
|
| 2973 |
|
| 2974 /* {{{ s_mp_mul_2d(mp, d) */ |
|
| 2975 |
|
| 2976 /* |
|
| 2977 Multiply by the integer 2^d, where d is a number of bits. This |
|
| 2978 amounts to a bitwise shift of the value, and does not require the |
|
| 2979 full multiplication code. |
|
| 2980 */ |
|
| 2981 mp_err s_mp_mul_2d(mp_int *mp, mp_digit d) |
|
| 2982 { |
|
| 2983 mp_err res; |
|
| 2984 mp_digit save, next, mask, *dp; |
|
| 2985 mp_size used; |
|
| 2986 int ix; |
|
| 2987 |
|
| 2988 if((res = s_mp_lshd(mp, d / DIGIT_BIT)) != MP_OKAY) |
|
| 2989 return res; |
|
| 2990 |
|
| 2991 dp = DIGITS(mp); used = USED(mp); |
|
| 2992 d %= DIGIT_BIT; |
|
| 2993 |
|
| 2994 mask = (1 << d) - 1; |
|
| 2995 |
|
| 2996 /* If the shift requires another digit, make sure we've got one to |
|
| 2997 work with */ |
|
| 2998 if((dp[used - 1] >> (DIGIT_BIT - d)) & mask) { |
|
| 2999 if((res = s_mp_grow(mp, used + 1)) != MP_OKAY) |
|
| 3000 return res; |
|
| 3001 dp = DIGITS(mp); |
|
| 3002 } |
|
| 3003 |
|
| 3004 /* Do the shifting... */ |
|
| 3005 save = 0; |
|
| 3006 for(ix = 0; ix < used; ix++) { |
|
| 3007 next = (dp[ix] >> (DIGIT_BIT - d)) & mask; |
|
| 3008 dp[ix] = (dp[ix] << d) | save; |
|
| 3009 save = next; |
|
| 3010 } |
|
| 3011 |
|
| 3012 /* If, at this point, we have a nonzero carryout into the next |
|
| 3013 digit, we'll increase the size by one digit, and store it... |
|
| 3014 */ |
|
| 3015 if(save) { |
|
| 3016 dp[used] = save; |
|
| 3017 USED(mp) += 1; |
|
| 3018 } |
|
| 3019 |
|
| 3020 s_mp_clamp(mp); |
|
| 3021 return MP_OKAY; |
|
| 3022 |
|
| 3023 } /* end s_mp_mul_2d() */ |
|
| 3024 |
|
| 3025 /* }}} */ |
|
| 3026 |
|
| 3027 /* {{{ s_mp_div_2d(mp, d) */ |
|
| 3028 |
|
| 3029 /* |
|
| 3030 Divide the integer by 2^d, where d is a number of bits. This |
|
| 3031 amounts to a bitwise shift of the value, and does not require the |
|
| 3032 full division code (used in Barrett reduction, see below) |
|
| 3033 */ |
|
| 3034 void s_mp_div_2d(mp_int *mp, mp_digit d) |
|
| 3035 { |
|
| 3036 int ix; |
|
| 3037 mp_digit save, next, mask, *dp = DIGITS(mp); |
|
| 3038 |
|
| 3039 s_mp_rshd(mp, d / DIGIT_BIT); |
|
| 3040 d %= DIGIT_BIT; |
|
| 3041 |
|
| 3042 mask = (1 << d) - 1; |
|
| 3043 |
|
| 3044 save = 0; |
|
| 3045 for(ix = USED(mp) - 1; ix >= 0; ix--) { |
|
| 3046 next = dp[ix] & mask; |
|
| 3047 dp[ix] = (dp[ix] >> d) | (save << (DIGIT_BIT - d)); |
|
| 3048 save = next; |
|
| 3049 } |
|
| 3050 |
|
| 3051 s_mp_clamp(mp); |
|
| 3052 |
|
| 3053 } /* end s_mp_div_2d() */ |
|
| 3054 |
|
| 3055 /* }}} */ |
|
| 3056 |
|
| 3057 /* {{{ s_mp_norm(a, b) */ |
|
| 3058 |
|
| 3059 /* |
|
| 3060 s_mp_norm(a, b) |
|
| 3061 |
|
| 3062 Normalize a and b for division, where b is the divisor. In order |
|
| 3063 that we might make good guesses for quotient digits, we want the |
|
| 3064 leading digit of b to be at least half the radix, which we |
|
| 3065 accomplish by multiplying a and b by a constant. This constant is |
|
| 3066 returned (so that it can be divided back out of the remainder at the |
|
| 3067 end of the division process). |
|
| 3068 |
|
| 3069 We multiply by the smallest power of 2 that gives us a leading digit |
|
| 3070 at least half the radix. By choosing a power of 2, we simplify the |
|
| 3071 multiplication and division steps to simple shifts. |
|
| 3072 */ |
|
| 3073 mp_digit s_mp_norm(mp_int *a, mp_int *b) |
|
| 3074 { |
|
| 3075 mp_digit t, d = 0; |
|
| 3076 |
|
| 3077 t = DIGIT(b, USED(b) - 1); |
|
| 3078 while(t < (RADIX / 2)) { |
|
| 3079 t <<= 1; |
|
| 3080 ++d; |
|
| 3081 } |
|
| 3082 |
|
| 3083 if(d != 0) { |
|
| 3084 s_mp_mul_2d(a, d); |
|
| 3085 s_mp_mul_2d(b, d); |
|
| 3086 } |
|
| 3087 |
|
| 3088 return d; |
|
| 3089 |
|
| 3090 } /* end s_mp_norm() */ |
|
| 3091 |
|
| 3092 /* }}} */ |
|
| 3093 |
|
| 3094 /* }}} */ |
|
| 3095 |
|
| 3096 /* {{{ Primitive digit arithmetic */ |
|
| 3097 |
|
| 3098 /* {{{ s_mp_add_d(mp, d) */ |
|
| 3099 |
|
| 3100 /* Add d to |mp| in place */ |
|
| 3101 mp_err s_mp_add_d(mp_int *mp, mp_digit d) /* unsigned digit addition */ |
|
| 3102 { |
|
| 3103 mp_word w, k = 0; |
|
| 3104 mp_size ix = 1, used = USED(mp); |
|
| 3105 mp_digit *dp = DIGITS(mp); |
|
| 3106 |
|
| 3107 w = dp[0] + d; |
|
| 3108 dp[0] = ACCUM(w); |
|
| 3109 k = CARRYOUT(w); |
|
| 3110 |
|
| 3111 while(ix < used && k) { |
|
| 3112 w = dp[ix] + k; |
|
| 3113 dp[ix] = ACCUM(w); |
|
| 3114 k = CARRYOUT(w); |
|
| 3115 ++ix; |
|
| 3116 } |
|
| 3117 |
|
| 3118 if(k != 0) { |
|
| 3119 mp_err res; |
|
| 3120 |
|
| 3121 if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY) |
|
| 3122 return res; |
|
| 3123 |
|
| 3124 DIGIT(mp, ix) = k; |
|
| 3125 } |
|
| 3126 |
|
| 3127 return MP_OKAY; |
|
| 3128 |
|
| 3129 } /* end s_mp_add_d() */ |
|
| 3130 |
|
| 3131 /* }}} */ |
|
| 3132 |
|
| 3133 /* {{{ s_mp_sub_d(mp, d) */ |
|
| 3134 |
|
| 3135 /* Subtract d from |mp| in place, assumes |mp| > d */ |
|
| 3136 mp_err s_mp_sub_d(mp_int *mp, mp_digit d) /* unsigned digit subtract */ |
|
| 3137 { |
|
| 3138 mp_word w, b = 0; |
|
| 3139 mp_size ix = 1, used = USED(mp); |
|
| 3140 mp_digit *dp = DIGITS(mp); |
|
| 3141 |
|
| 3142 /* Compute initial subtraction */ |
|
| 3143 w = (RADIX + dp[0]) - d; |
|
| 3144 b = CARRYOUT(w) ? 0 : 1; |
|
| 3145 dp[0] = ACCUM(w); |
|
| 3146 |
|
| 3147 /* Propagate borrows leftward */ |
|
| 3148 while(b && ix < used) { |
|
| 3149 w = (RADIX + dp[ix]) - b; |
|
| 3150 b = CARRYOUT(w) ? 0 : 1; |
|
| 3151 dp[ix] = ACCUM(w); |
|
| 3152 ++ix; |
|
| 3153 } |
|
| 3154 |
|
| 3155 /* Remove leading zeroes */ |
|
| 3156 s_mp_clamp(mp); |
|
| 3157 |
|
| 3158 /* If we have a borrow out, it's a violation of the input invariant */ |
|
| 3159 if(b) |
|
| 3160 return MP_RANGE; |
|
| 3161 else |
|
| 3162 return MP_OKAY; |
|
| 3163 |
|
| 3164 } /* end s_mp_sub_d() */ |
|
| 3165 |
|
| 3166 /* }}} */ |
|
| 3167 |
|
| 3168 /* {{{ s_mp_mul_d(a, d) */ |
|
| 3169 |
|
| 3170 /* Compute a = a * d, single digit multiplication */ |
|
| 3171 mp_err s_mp_mul_d(mp_int *a, mp_digit d) |
|
| 3172 { |
|
| 3173 mp_word w, k = 0; |
|
| 3174 mp_size ix, max; |
|
| 3175 mp_err res; |
|
| 3176 mp_digit *dp = DIGITS(a); |
|
| 3177 |
|
| 3178 /* |
|
| 3179 Single-digit multiplication will increase the precision of the |
|
| 3180 output by at most one digit. However, we can detect when this |
|
| 3181 will happen -- if the high-order digit of a, times d, gives a |
|
| 3182 two-digit result, then the precision of the result will increase; |
|
| 3183 otherwise it won't. We use this fact to avoid calling s_mp_pad() |
|
| 3184 unless absolutely necessary. |
|
| 3185 */ |
|
| 3186 max = USED(a); |
|
| 3187 w = dp[max - 1] * d; |
|
| 3188 if(CARRYOUT(w) != 0) { |
|
| 3189 if((res = s_mp_pad(a, max + 1)) != MP_OKAY) |
|
| 3190 return res; |
|
| 3191 dp = DIGITS(a); |
|
| 3192 } |
|
| 3193 |
|
| 3194 for(ix = 0; ix < max; ix++) { |
|
| 3195 w = (dp[ix] * d) + k; |
|
| 3196 dp[ix] = ACCUM(w); |
|
| 3197 k = CARRYOUT(w); |
|
| 3198 } |
|
| 3199 |
|
| 3200 /* If there is a precision increase, take care of it here; the above |
|
| 3201 test guarantees we have enough storage to do this safely. |
|
| 3202 */ |
|
| 3203 if(k) { |
|
| 3204 dp[max] = k; |
|
| 3205 USED(a) = max + 1; |
|
| 3206 } |
|
| 3207 |
|
| 3208 s_mp_clamp(a); |
|
| 3209 |
|
| 3210 return MP_OKAY; |
|
| 3211 |
|
| 3212 } /* end s_mp_mul_d() */ |
|
| 3213 |
|
| 3214 /* }}} */ |
|
| 3215 |
|
| 3216 /* {{{ s_mp_div_d(mp, d, r) */ |
|
| 3217 |
|
| 3218 /* |
|
| 3219 s_mp_div_d(mp, d, r) |
|
| 3220 |
|
| 3221 Compute the quotient mp = mp / d and remainder r = mp mod d, for a |
|
| 3222 single digit d. If r is null, the remainder will be discarded. |
|
| 3223 */ |
|
| 3224 |
|
| 3225 mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r) |
|
| 3226 { |
|
| 3227 mp_word w = 0, t; |
|
| 3228 mp_int quot; |
|
| 3229 mp_err res; |
|
| 3230 mp_digit *dp = DIGITS(mp), *qp; |
|
| 3231 int ix; |
|
| 3232 |
|
| 3233 if(d == 0) |
|
| 3234 return MP_RANGE; |
|
| 3235 |
|
| 3236 /* Make room for the quotient */ |
|
| 3237 if((res = mp_init_size(", USED(mp))) != MP_OKAY) |
|
| 3238 return res; |
|
| 3239 |
|
| 3240 USED(") = USED(mp); /* so clamping will work below */ |
|
| 3241 qp = DIGITS("); |
|
| 3242 |
|
| 3243 /* Divide without subtraction */ |
|
| 3244 for(ix = USED(mp) - 1; ix >= 0; ix--) { |
|
| 3245 w = (w << DIGIT_BIT) | dp[ix]; |
|
| 3246 |
|
| 3247 if(w >= d) { |
|
| 3248 t = w / d; |
|
| 3249 w = w % d; |
|
| 3250 } else { |
|
| 3251 t = 0; |
|
| 3252 } |
|
| 3253 |
|
| 3254 qp[ix] = t; |
|
| 3255 } |
|
| 3256 |
|
| 3257 /* Deliver the remainder, if desired */ |
|
| 3258 if(r) |
|
| 3259 *r = w; |
|
| 3260 |
|
| 3261 s_mp_clamp("); |
|
| 3262 mp_exch(", mp); |
|
| 3263 mp_clear("); |
|
| 3264 |
|
| 3265 return MP_OKAY; |
|
| 3266 |
|
| 3267 } /* end s_mp_div_d() */ |
|
| 3268 |
|
| 3269 /* }}} */ |
|
| 3270 |
|
| 3271 /* }}} */ |
|
| 3272 |
|
| 3273 /* {{{ Primitive full arithmetic */ |
|
| 3274 |
|
| 3275 /* {{{ s_mp_add(a, b) */ |
|
| 3276 |
|
| 3277 /* Compute a = |a| + |b| */ |
|
| 3278 mp_err s_mp_add(mp_int *a, mp_int *b) /* magnitude addition */ |
|
| 3279 { |
|
| 3280 mp_word w = 0; |
|
| 3281 mp_digit *pa, *pb; |
|
| 3282 mp_size ix, used = USED(b); |
|
| 3283 mp_err res; |
|
| 3284 |
|
| 3285 /* Make sure a has enough precision for the output value */ |
|
| 3286 if((used > USED(a)) && (res = s_mp_pad(a, used)) != MP_OKAY) |
|
| 3287 return res; |
|
| 3288 |
|
| 3289 /* |
|
| 3290 Add up all digits up to the precision of b. If b had initially |
|
| 3291 the same precision as a, or greater, we took care of it by the |
|
| 3292 padding step above, so there is no problem. If b had initially |
|
| 3293 less precision, we'll have to make sure the carry out is duly |
|
| 3294 propagated upward among the higher-order digits of the sum. |
|
| 3295 */ |
|
| 3296 pa = DIGITS(a); |
|
| 3297 pb = DIGITS(b); |
|
| 3298 for(ix = 0; ix < used; ++ix) { |
|
| 3299 w += *pa + *pb++; |
|
| 3300 *pa++ = ACCUM(w); |
|
| 3301 w = CARRYOUT(w); |
|
| 3302 } |
|
| 3303 |
|
| 3304 /* If we run out of 'b' digits before we're actually done, make |
|
| 3305 sure the carries get propagated upward... |
|
| 3306 */ |
|
| 3307 used = USED(a); |
|
| 3308 while(w && ix < used) { |
|
| 3309 w += *pa; |
|
| 3310 *pa++ = ACCUM(w); |
|
| 3311 w = CARRYOUT(w); |
|
| 3312 ++ix; |
|
| 3313 } |
|
| 3314 |
|
| 3315 /* If there's an overall carry out, increase precision and include |
|
| 3316 it. We could have done this initially, but why touch the memory |
|
| 3317 allocator unless we're sure we have to? |
|
| 3318 */ |
|
| 3319 if(w) { |
|
| 3320 if((res = s_mp_pad(a, used + 1)) != MP_OKAY) |
|
| 3321 return res; |
|
| 3322 |
|
| 3323 DIGIT(a, ix) = w; /* pa may not be valid after s_mp_pad() call */ |
|
| 3324 } |
|
| 3325 |
|
| 3326 return MP_OKAY; |
|
| 3327 |
|
| 3328 } /* end s_mp_add() */ |
|
| 3329 |
|
| 3330 /* }}} */ |
|
| 3331 |
|
| 3332 /* {{{ s_mp_sub(a, b) */ |
|
| 3333 |
|
| 3334 /* Compute a = |a| - |b|, assumes |a| >= |b| */ |
|
| 3335 mp_err s_mp_sub(mp_int *a, mp_int *b) /* magnitude subtract */ |
|
| 3336 { |
|
| 3337 mp_word w = 0; |
|
| 3338 mp_digit *pa, *pb; |
|
| 3339 mp_size ix, used = USED(b); |
|
| 3340 |
|
| 3341 /* |
|
| 3342 Subtract and propagate borrow. Up to the precision of b, this |
|
| 3343 accounts for the digits of b; after that, we just make sure the |
|
| 3344 carries get to the right place. This saves having to pad b out to |
|
| 3345 the precision of a just to make the loops work right... |
|
| 3346 */ |
|
| 3347 pa = DIGITS(a); |
|
| 3348 pb = DIGITS(b); |
|
| 3349 |
|
| 3350 for(ix = 0; ix < used; ++ix) { |
|
| 3351 w = (RADIX + *pa) - w - *pb++; |
|
| 3352 *pa++ = ACCUM(w); |
|
| 3353 w = CARRYOUT(w) ? 0 : 1; |
|
| 3354 } |
|
| 3355 |
|
| 3356 used = USED(a); |
|
| 3357 while(ix < used) { |
|
| 3358 w = RADIX + *pa - w; |
|
| 3359 *pa++ = ACCUM(w); |
|
| 3360 w = CARRYOUT(w) ? 0 : 1; |
|
| 3361 ++ix; |
|
| 3362 } |
|
| 3363 |
|
| 3364 /* Clobber any leading zeroes we created */ |
|
| 3365 s_mp_clamp(a); |
|
| 3366 |
|
| 3367 /* |
|
| 3368 If there was a borrow out, then |b| > |a| in violation |
|
| 3369 of our input invariant. We've already done the work, |
|
| 3370 but we'll at least complain about it... |
|
| 3371 */ |
|
| 3372 if(w) |
|
| 3373 return MP_RANGE; |
|
| 3374 else |
|
| 3375 return MP_OKAY; |
|
| 3376 |
|
| 3377 } /* end s_mp_sub() */ |
|
| 3378 |
|
| 3379 /* }}} */ |
|
| 3380 |
|
| 3381 /* {{{ s_mp_mul(a, b) */ |
|
| 3382 |
|
| 3383 /* Compute a = |a| * |b| */ |
|
| 3384 mp_err s_mp_mul(mp_int *a, mp_int *b) |
|
| 3385 { |
|
| 3386 mp_word w, k = 0; |
|
| 3387 mp_int tmp; |
|
| 3388 mp_err res; |
|
| 3389 mp_size ix, jx, ua = USED(a), ub = USED(b); |
|
| 3390 mp_digit *pa, *pb, *pt, *pbt; |
|
| 3391 |
|
| 3392 if((res = mp_init_size(&tmp, ua + ub)) != MP_OKAY) |
|
| 3393 return res; |
|
| 3394 |
|
| 3395 /* This has the effect of left-padding with zeroes... */ |
|
| 3396 USED(&tmp) = ua + ub; |
|
| 3397 |
|
| 3398 /* We're going to need the base value each iteration */ |
|
| 3399 pbt = DIGITS(&tmp); |
|
| 3400 |
|
| 3401 /* Outer loop: Digits of b */ |
|
| 3402 |
|
| 3403 pb = DIGITS(b); |
|
| 3404 for(ix = 0; ix < ub; ++ix, ++pb) { |
|
| 3405 if(*pb == 0) |
|
| 3406 continue; |
|
| 3407 |
|
| 3408 /* Inner product: Digits of a */ |
|
| 3409 pa = DIGITS(a); |
|
| 3410 for(jx = 0; jx < ua; ++jx, ++pa) { |
|
| 3411 pt = pbt + ix + jx; |
|
| 3412 w = *pb * *pa + k + *pt; |
|
| 3413 *pt = ACCUM(w); |
|
| 3414 k = CARRYOUT(w); |
|
| 3415 } |
|
| 3416 |
|
| 3417 pbt[ix + jx] = k; |
|
| 3418 k = 0; |
|
| 3419 } |
|
| 3420 |
|
| 3421 s_mp_clamp(&tmp); |
|
| 3422 s_mp_exch(&tmp, a); |
|
| 3423 |
|
| 3424 mp_clear(&tmp); |
|
| 3425 |
|
| 3426 return MP_OKAY; |
|
| 3427 |
|
| 3428 } /* end s_mp_mul() */ |
|
| 3429 |
|
| 3430 /* }}} */ |
|
| 3431 |
|
| 3432 /* {{{ s_mp_kmul(a, b, out, len) */ |
|
| 3433 |
|
| 3434 #if 0 |
|
| 3435 void s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len) |
|
| 3436 { |
|
| 3437 mp_word w, k = 0; |
|
| 3438 mp_size ix, jx; |
|
| 3439 mp_digit *pa, *pt; |
|
| 3440 |
|
| 3441 for(ix = 0; ix < len; ++ix, ++b) { |
|
| 3442 if(*b == 0) |
|
| 3443 continue; |
|
| 3444 |
|
| 3445 pa = a; |
|
| 3446 for(jx = 0; jx < len; ++jx, ++pa) { |
|
| 3447 pt = out + ix + jx; |
|
| 3448 w = *b * *pa + k + *pt; |
|
| 3449 *pt = ACCUM(w); |
|
| 3450 k = CARRYOUT(w); |
|
| 3451 } |
|
| 3452 |
|
| 3453 out[ix + jx] = k; |
|
| 3454 k = 0; |
|
| 3455 } |
|
| 3456 |
|
| 3457 } /* end s_mp_kmul() */ |
|
| 3458 #endif |
|
| 3459 |
|
| 3460 /* }}} */ |
|
| 3461 |
|
| 3462 /* {{{ s_mp_sqr(a) */ |
|
| 3463 |
|
| 3464 /* |
|
| 3465 Computes the square of a, in place. This can be done more |
|
| 3466 efficiently than a general multiplication, because many of the |
|
| 3467 computation steps are redundant when squaring. The inner product |
|
| 3468 step is a bit more complicated, but we save a fair number of |
|
| 3469 iterations of the multiplication loop. |
|
| 3470 */ |
|
| 3471 #if MP_SQUARE |
|
| 3472 mp_err s_mp_sqr(mp_int *a) |
|
| 3473 { |
|
| 3474 mp_word w, k = 0; |
|
| 3475 mp_int tmp; |
|
| 3476 mp_err res; |
|
| 3477 mp_size ix, jx, kx, used = USED(a); |
|
| 3478 mp_digit *pa1, *pa2, *pt, *pbt; |
|
| 3479 |
|
| 3480 if((res = mp_init_size(&tmp, 2 * used)) != MP_OKAY) |
|
| 3481 return res; |
|
| 3482 |
|
| 3483 /* Left-pad with zeroes */ |
|
| 3484 USED(&tmp) = 2 * used; |
|
| 3485 |
|
| 3486 /* We need the base value each time through the loop */ |
|
| 3487 pbt = DIGITS(&tmp); |
|
| 3488 |
|
| 3489 pa1 = DIGITS(a); |
|
| 3490 for(ix = 0; ix < used; ++ix, ++pa1) { |
|
| 3491 if(*pa1 == 0) |
|
| 3492 continue; |
|
| 3493 |
|
| 3494 w = DIGIT(&tmp, ix + ix) + (*pa1 * *pa1); |
|
| 3495 |
|
| 3496 pbt[ix + ix] = ACCUM(w); |
|
| 3497 k = CARRYOUT(w); |
|
| 3498 |
|
| 3499 /* |
|
| 3500 The inner product is computed as: |
|
| 3501 |
|
| 3502 (C, S) = t[i,j] + 2 a[i] a[j] + C |
|
| 3503 |
|
| 3504 This can overflow what can be represented in an mp_word, and |
|
| 3505 since C arithmetic does not provide any way to check for |
|
| 3506 overflow, we have to check explicitly for overflow conditions |
|
| 3507 before they happen. |
|
| 3508 */ |
|
| 3509 for(jx = ix + 1, pa2 = DIGITS(a) + jx; jx < used; ++jx, ++pa2) { |
|
| 3510 mp_word u = 0, v; |
|
| 3511 |
|
| 3512 /* Store this in a temporary to avoid indirections later */ |
|
| 3513 pt = pbt + ix + jx; |
|
| 3514 |
|
| 3515 /* Compute the multiplicative step */ |
|
| 3516 w = *pa1 * *pa2; |
|
| 3517 |
|
| 3518 /* If w is more than half MP_WORD_MAX, the doubling will |
|
| 3519 overflow, and we need to record a carry out into the next |
|
| 3520 word */ |
|
| 3521 u = (w >> (MP_WORD_BIT - 1)) & 1; |
|
| 3522 |
|
| 3523 /* Double what we've got, overflow will be ignored as defined |
|
| 3524 for C arithmetic (we've already noted if it is to occur) |
|
| 3525 */ |
|
| 3526 w *= 2; |
|
| 3527 |
|
| 3528 /* Compute the additive step */ |
|
| 3529 v = *pt + k; |
|
| 3530 |
|
| 3531 /* If we do not already have an overflow carry, check to see |
|
| 3532 if the addition will cause one, and set the carry out if so |
|
| 3533 */ |
|
| 3534 u |= ((MP_WORD_MAX - v) < w); |
|
| 3535 |
|
| 3536 /* Add in the rest, again ignoring overflow */ |
|
| 3537 w += v; |
|
| 3538 |
|
| 3539 /* Set the i,j digit of the output */ |
|
| 3540 *pt = ACCUM(w); |
|
| 3541 |
|
| 3542 /* Save carry information for the next iteration of the loop. |
|
| 3543 This is why k must be an mp_word, instead of an mp_digit */ |
|
| 3544 k = CARRYOUT(w) | (u << DIGIT_BIT); |
|
| 3545 |
|
| 3546 } /* for(jx ...) */ |
|
| 3547 |
|
| 3548 /* Set the last digit in the cycle and reset the carry */ |
|
| 3549 k = DIGIT(&tmp, ix + jx) + k; |
|
| 3550 pbt[ix + jx] = ACCUM(k); |
|
| 3551 k = CARRYOUT(k); |
|
| 3552 |
|
| 3553 /* If we are carrying out, propagate the carry to the next digit |
|
| 3554 in the output. This may cascade, so we have to be somewhat |
|
| 3555 circumspect -- but we will have enough precision in the output |
|
| 3556 that we won't overflow |
|
| 3557 */ |
|
| 3558 kx = 1; |
|
| 3559 while(k) { |
|
| 3560 k = pbt[ix + jx + kx] + 1; |
|
| 3561 pbt[ix + jx + kx] = ACCUM(k); |
|
| 3562 k = CARRYOUT(k); |
|
| 3563 ++kx; |
|
| 3564 } |
|
| 3565 } /* for(ix ...) */ |
|
| 3566 |
|
| 3567 s_mp_clamp(&tmp); |
|
| 3568 s_mp_exch(&tmp, a); |
|
| 3569 |
|
| 3570 mp_clear(&tmp); |
|
| 3571 |
|
| 3572 return MP_OKAY; |
|
| 3573 |
|
| 3574 } /* end s_mp_sqr() */ |
|
| 3575 #endif |
|
| 3576 |
|
| 3577 /* }}} */ |
|
| 3578 |
|
| 3579 /* {{{ s_mp_div(a, b) */ |
|
| 3580 |
|
| 3581 /* |
|
| 3582 s_mp_div(a, b) |
|
| 3583 |
|
| 3584 Compute a = a / b and b = a mod b. Assumes b > a. |
|
| 3585 */ |
|
| 3586 |
|
| 3587 mp_err s_mp_div(mp_int *a, mp_int *b) |
|
| 3588 { |
|
| 3589 mp_int quot, rem, t; |
|
| 3590 mp_word q; |
|
| 3591 mp_err res; |
|
| 3592 mp_digit d; |
|
| 3593 int ix; |
|
| 3594 |
|
| 3595 if(mp_cmp_z(b) == 0) |
|
| 3596 return MP_RANGE; |
|
| 3597 |
|
| 3598 /* Shortcut if b is power of two */ |
|
| 3599 if((ix = s_mp_ispow2(b)) >= 0) { |
|
| 3600 mp_copy(a, b); /* need this for remainder */ |
|
| 3601 s_mp_div_2d(a, (mp_digit)ix); |
|
| 3602 s_mp_mod_2d(b, (mp_digit)ix); |
|
| 3603 |
|
| 3604 return MP_OKAY; |
|
| 3605 } |
|
| 3606 |
|
| 3607 /* Allocate space to store the quotient */ |
|
| 3608 if((res = mp_init_size(", USED(a))) != MP_OKAY) |
|
| 3609 return res; |
|
| 3610 |
|
| 3611 /* A working temporary for division */ |
|
| 3612 if((res = mp_init_size(&t, USED(a))) != MP_OKAY) |
|
| 3613 goto T; |
|
| 3614 |
|
| 3615 /* Allocate space for the remainder */ |
|
| 3616 if((res = mp_init_size(&rem, USED(a))) != MP_OKAY) |
|
| 3617 goto REM; |
|
| 3618 |
|
| 3619 /* Normalize to optimize guessing */ |
|
| 3620 d = s_mp_norm(a, b); |
|
| 3621 |
|
| 3622 /* Perform the division itself...woo! */ |
|
| 3623 ix = USED(a) - 1; |
|
| 3624 |
|
| 3625 while(ix >= 0) { |
|
| 3626 /* Find a partial substring of a which is at least b */ |
|
| 3627 while(s_mp_cmp(&rem, b) < 0 && ix >= 0) { |
|
| 3628 if((res = s_mp_lshd(&rem, 1)) != MP_OKAY) |
|
| 3629 goto CLEANUP; |
|
| 3630 |
|
| 3631 if((res = s_mp_lshd(", 1)) != MP_OKAY) |
|
| 3632 goto CLEANUP; |
|
| 3633 |
|
| 3634 DIGIT(&rem, 0) = DIGIT(a, ix); |
|
| 3635 s_mp_clamp(&rem); |
|
| 3636 --ix; |
|
| 3637 } |
|
| 3638 |
|
| 3639 /* If we didn't find one, we're finished dividing */ |
|
| 3640 if(s_mp_cmp(&rem, b) < 0) |
|
| 3641 break; |
|
| 3642 |
|
| 3643 /* Compute a guess for the next quotient digit */ |
|
| 3644 q = DIGIT(&rem, USED(&rem) - 1); |
|
| 3645 if(q <= DIGIT(b, USED(b) - 1) && USED(&rem) > 1) |
|
| 3646 q = (q << DIGIT_BIT) | DIGIT(&rem, USED(&rem) - 2); |
|
| 3647 |
|
| 3648 q /= DIGIT(b, USED(b) - 1); |
|
| 3649 |
|
| 3650 /* The guess can be as much as RADIX + 1 */ |
|
| 3651 if(q >= RADIX) |
|
| 3652 q = RADIX - 1; |
|
| 3653 |
|
| 3654 /* See what that multiplies out to */ |
|
| 3655 mp_copy(b, &t); |
|
| 3656 if((res = s_mp_mul_d(&t, q)) != MP_OKAY) |
|
| 3657 goto CLEANUP; |
|
| 3658 |
|
| 3659 /* |
|
| 3660 If it's too big, back it off. We should not have to do this |
|
| 3661 more than once, or, in rare cases, twice. Knuth describes a |
|
| 3662 method by which this could be reduced to a maximum of once, but |
|
| 3663 I didn't implement that here. |
|
| 3664 */ |
|
| 3665 while(s_mp_cmp(&t, &rem) > 0) { |
|
| 3666 --q; |
|
| 3667 s_mp_sub(&t, b); |
|
| 3668 } |
|
| 3669 |
|
| 3670 /* At this point, q should be the right next digit */ |
|
| 3671 if((res = s_mp_sub(&rem, &t)) != MP_OKAY) |
|
| 3672 goto CLEANUP; |
|
| 3673 |
|
| 3674 /* |
|
| 3675 Include the digit in the quotient. We allocated enough memory |
|
| 3676 for any quotient we could ever possibly get, so we should not |
|
| 3677 have to check for failures here |
|
| 3678 */ |
|
| 3679 DIGIT(", 0) = q; |
|
| 3680 } |
|
| 3681 |
|
| 3682 /* Denormalize remainder */ |
|
| 3683 if(d != 0) |
|
| 3684 s_mp_div_2d(&rem, d); |
|
| 3685 |
|
| 3686 s_mp_clamp("); |
|
| 3687 s_mp_clamp(&rem); |
|
| 3688 |
|
| 3689 /* Copy quotient back to output */ |
|
| 3690 s_mp_exch(", a); |
|
| 3691 |
|
| 3692 /* Copy remainder back to output */ |
|
| 3693 s_mp_exch(&rem, b); |
|
| 3694 |
|
| 3695 CLEANUP: |
|
| 3696 mp_clear(&rem); |
|
| 3697 REM: |
|
| 3698 mp_clear(&t); |
|
| 3699 T: |
|
| 3700 mp_clear("); |
|
| 3701 |
|
| 3702 return res; |
|
| 3703 |
|
| 3704 } /* end s_mp_div() */ |
|
| 3705 |
|
| 3706 /* }}} */ |
|
| 3707 |
|
| 3708 /* {{{ s_mp_2expt(a, k) */ |
|
| 3709 |
|
| 3710 mp_err s_mp_2expt(mp_int *a, mp_digit k) |
|
| 3711 { |
|
| 3712 mp_err res; |
|
| 3713 mp_size dig, bit; |
|
| 3714 |
|
| 3715 dig = k / DIGIT_BIT; |
|
| 3716 bit = k % DIGIT_BIT; |
|
| 3717 |
|
| 3718 mp_zero(a); |
|
| 3719 if((res = s_mp_pad(a, dig + 1)) != MP_OKAY) |
|
| 3720 return res; |
|
| 3721 |
|
| 3722 DIGIT(a, dig) |= (1 << bit); |
|
| 3723 |
|
| 3724 return MP_OKAY; |
|
| 3725 |
|
| 3726 } /* end s_mp_2expt() */ |
|
| 3727 |
|
| 3728 /* }}} */ |
|
| 3729 |
|
| 3730 /* {{{ s_mp_reduce(x, m, mu) */ |
|
| 3731 |
|
| 3732 /* |
|
| 3733 Compute Barrett reduction, x (mod m), given a precomputed value for |
|
| 3734 mu = b^2k / m, where b = RADIX and k = #digits(m). This should be |
|
| 3735 faster than straight division, when many reductions by the same |
|
| 3736 value of m are required (such as in modular exponentiation). This |
|
| 3737 can nearly halve the time required to do modular exponentiation, |
|
| 3738 as compared to using the full integer divide to reduce. |
|
| 3739 |
|
| 3740 This algorithm was derived from the _Handbook of Applied |
|
| 3741 Cryptography_ by Menezes, Oorschot and VanStone, Ch. 14, |
|
| 3742 pp. 603-604. |
|
| 3743 */ |
|
| 3744 |
|
| 3745 mp_err s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu) |
|
| 3746 { |
|
| 3747 mp_int q; |
|
| 3748 mp_err res; |
|
| 3749 mp_size um = USED(m); |
|
| 3750 |
|
| 3751 if((res = mp_init_copy(&q, x)) != MP_OKAY) |
|
| 3752 return res; |
|
| 3753 |
|
| 3754 s_mp_rshd(&q, um - 1); /* q1 = x / b^(k-1) */ |
|
| 3755 s_mp_mul(&q, mu); /* q2 = q1 * mu */ |
|
| 3756 s_mp_rshd(&q, um + 1); /* q3 = q2 / b^(k+1) */ |
|
| 3757 |
|
| 3758 /* x = x mod b^(k+1), quick (no division) */ |
|
| 3759 s_mp_mod_2d(x, DIGIT_BIT * (um + 1)); |
|
| 3760 |
|
| 3761 /* q = q * m mod b^(k+1), quick (no division) */ |
|
| 3762 s_mp_mul(&q, m); |
|
| 3763 s_mp_mod_2d(&q, DIGIT_BIT * (um + 1)); |
|
| 3764 |
|
| 3765 /* x = x - q */ |
|
| 3766 if((res = mp_sub(x, &q, x)) != MP_OKAY) |
|
| 3767 goto CLEANUP; |
|
| 3768 |
|
| 3769 /* If x < 0, add b^(k+1) to it */ |
|
| 3770 if(mp_cmp_z(x) < 0) { |
|
| 3771 mp_set(&q, 1); |
|
| 3772 if((res = s_mp_lshd(&q, um + 1)) != MP_OKAY) |
|
| 3773 goto CLEANUP; |
|
| 3774 if((res = mp_add(x, &q, x)) != MP_OKAY) |
|
| 3775 goto CLEANUP; |
|
| 3776 } |
|
| 3777 |
|
| 3778 /* Back off if it's too big */ |
|
| 3779 while(mp_cmp(x, m) >= 0) { |
|
| 3780 if((res = s_mp_sub(x, m)) != MP_OKAY) |
|
| 3781 break; |
|
| 3782 } |
|
| 3783 |
|
| 3784 CLEANUP: |
|
| 3785 mp_clear(&q); |
|
| 3786 |
|
| 3787 return res; |
|
| 3788 |
|
| 3789 } /* end s_mp_reduce() */ |
|
| 3790 |
|
| 3791 /* }}} */ |
|
| 3792 |
|
| 3793 /* }}} */ |
|
| 3794 |
|
| 3795 /* {{{ Primitive comparisons */ |
|
| 3796 |
|
| 3797 /* {{{ s_mp_cmp(a, b) */ |
|
| 3798 |
|
| 3799 /* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b */ |
|
| 3800 int s_mp_cmp(mp_int *a, mp_int *b) |
|
| 3801 { |
|
| 3802 mp_size ua = USED(a), ub = USED(b); |
|
| 3803 |
|
| 3804 if(ua > ub) |
|
| 3805 return MP_GT; |
|
| 3806 else if(ua < ub) |
|
| 3807 return MP_LT; |
|
| 3808 else { |
|
| 3809 int ix = ua - 1; |
|
| 3810 mp_digit *ap = DIGITS(a) + ix, *bp = DIGITS(b) + ix; |
|
| 3811 |
|
| 3812 while(ix >= 0) { |
|
| 3813 if(*ap > *bp) |
|
| 3814 return MP_GT; |
|
| 3815 else if(*ap < *bp) |
|
| 3816 return MP_LT; |
|
| 3817 |
|
| 3818 --ap; --bp; --ix; |
|
| 3819 } |
|
| 3820 |
|
| 3821 return MP_EQ; |
|
| 3822 } |
|
| 3823 |
|
| 3824 } /* end s_mp_cmp() */ |
|
| 3825 |
|
| 3826 /* }}} */ |
|
| 3827 |
|
| 3828 /* {{{ s_mp_cmp_d(a, d) */ |
|
| 3829 |
|
| 3830 /* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d */ |
|
| 3831 int s_mp_cmp_d(mp_int *a, mp_digit d) |
|
| 3832 { |
|
| 3833 mp_size ua = USED(a); |
|
| 3834 mp_digit *ap = DIGITS(a); |
|
| 3835 |
|
| 3836 if(ua > 1) |
|
| 3837 return MP_GT; |
|
| 3838 |
|
| 3839 if(*ap < d) |
|
| 3840 return MP_LT; |
|
| 3841 else if(*ap > d) |
|
| 3842 return MP_GT; |
|
| 3843 else |
|
| 3844 return MP_EQ; |
|
| 3845 |
|
| 3846 } /* end s_mp_cmp_d() */ |
|
| 3847 |
|
| 3848 /* }}} */ |
|
| 3849 |
|
| 3850 /* {{{ s_mp_ispow2(v) */ |
|
| 3851 |
|
| 3852 /* |
|
| 3853 Returns -1 if the value is not a power of two; otherwise, it returns |
|
| 3854 k such that v = 2^k, i.e. lg(v). |
|
| 3855 */ |
|
| 3856 int s_mp_ispow2(mp_int *v) |
|
| 3857 { |
|
| 3858 mp_digit d, *dp; |
|
| 3859 mp_size uv = USED(v); |
|
| 3860 int extra = 0, ix; |
|
| 3861 |
|
| 3862 d = DIGIT(v, uv - 1); /* most significant digit of v */ |
|
| 3863 |
|
| 3864 while(d && ((d & 1) == 0)) { |
|
| 3865 d >>= 1; |
|
| 3866 ++extra; |
|
| 3867 } |
|
| 3868 |
|
| 3869 if(d == 1) { |
|
| 3870 ix = uv - 2; |
|
| 3871 dp = DIGITS(v) + ix; |
|
| 3872 |
|
| 3873 while(ix >= 0) { |
|
| 3874 if(*dp) |
|
| 3875 return -1; /* not a power of two */ |
|
| 3876 |
|
| 3877 --dp; --ix; |
|
| 3878 } |
|
| 3879 |
|
| 3880 return ((uv - 1) * DIGIT_BIT) + extra; |
|
| 3881 } |
|
| 3882 |
|
| 3883 return -1; |
|
| 3884 |
|
| 3885 } /* end s_mp_ispow2() */ |
|
| 3886 |
|
| 3887 /* }}} */ |
|
| 3888 |
|
| 3889 /* {{{ s_mp_ispow2d(d) */ |
|
| 3890 |
|
| 3891 int s_mp_ispow2d(mp_digit d) |
|
| 3892 { |
|
| 3893 int pow = 0; |
|
| 3894 |
|
| 3895 while((d & 1) == 0) { |
|
| 3896 ++pow; d >>= 1; |
|
| 3897 } |
|
| 3898 |
|
| 3899 if(d == 1) |
|
| 3900 return pow; |
|
| 3901 |
|
| 3902 return -1; |
|
| 3903 |
|
| 3904 } /* end s_mp_ispow2d() */ |
|
| 3905 |
|
| 3906 /* }}} */ |
|
| 3907 |
|
| 3908 /* }}} */ |
|
| 3909 |
|
| 3910 /* {{{ Primitive I/O helpers */ |
|
| 3911 |
|
| 3912 /* {{{ s_mp_tovalue(ch, r) */ |
|
| 3913 |
|
| 3914 /* |
|
| 3915 Convert the given character to its digit value, in the given radix. |
|
| 3916 If the given character is not understood in the given radix, -1 is |
|
| 3917 returned. Otherwise the digit's numeric value is returned. |
|
| 3918 |
|
| 3919 The results will be odd if you use a radix < 2 or > 62, you are |
|
| 3920 expected to know what you're up to. |
|
| 3921 */ |
|
| 3922 int s_mp_tovalue(char ch, int r) |
|
| 3923 { |
|
| 3924 int val, xch; |
|
| 3925 |
|
| 3926 if(r > 36) |
|
| 3927 xch = ch; |
|
| 3928 else |
|
| 3929 xch = toupper(ch); |
|
| 3930 |
|
| 3931 if(isdigit(xch)) |
|
| 3932 val = xch - '0'; |
|
| 3933 else if(isupper(xch)) |
|
| 3934 val = xch - 'A' + 10; |
|
| 3935 else if(islower(xch)) |
|
| 3936 val = xch - 'a' + 36; |
|
| 3937 else if(xch == '+') |
|
| 3938 val = 62; |
|
| 3939 else if(xch == '/') |
|
| 3940 val = 63; |
|
| 3941 else |
|
| 3942 return -1; |
|
| 3943 |
|
| 3944 if(val < 0 || val >= r) |
|
| 3945 return -1; |
|
| 3946 |
|
| 3947 return val; |
|
| 3948 |
|
| 3949 } /* end s_mp_tovalue() */ |
|
| 3950 |
|
| 3951 /* }}} */ |
|
| 3952 |
|
| 3953 /* {{{ s_mp_todigit(val, r, low) */ |
|
| 3954 |
|
| 3955 /* |
|
| 3956 Convert val to a radix-r digit, if possible. If val is out of range |
|
| 3957 for r, returns zero. Otherwise, returns an ASCII character denoting |
|
| 3958 the value in the given radix. |
|
| 3959 |
|
| 3960 The results may be odd if you use a radix < 2 or > 64, you are |
|
| 3961 expected to know what you're doing. |
|
| 3962 */ |
|
| 3963 |
|
| 3964 char s_mp_todigit(int val, int r, int low) |
|
| 3965 { |
|
| 3966 char ch; |
|
| 3967 |
|
| 3968 if(val < 0 || val >= r) |
|
| 3969 return 0; |
|
| 3970 |
|
| 3971 ch = s_dmap_1[val]; |
|
| 3972 |
|
| 3973 if(r <= 36 && low) |
|
| 3974 ch = tolower(ch); |
|
| 3975 |
|
| 3976 return ch; |
|
| 3977 |
|
| 3978 } /* end s_mp_todigit() */ |
|
| 3979 |
|
| 3980 /* }}} */ |
|
| 3981 |
|
| 3982 /* {{{ s_mp_outlen(bits, radix) */ |
|
| 3983 |
|
| 3984 /* |
|
| 3985 Return an estimate for how long a string is needed to hold a radix |
|
| 3986 r representation of a number with 'bits' significant bits. |
|
| 3987 |
|
| 3988 Does not include space for a sign or a NUL terminator. |
|
| 3989 */ |
|
| 3990 int s_mp_outlen(int bits, int r) |
|
| 3991 { |
|
| 3992 return (int)((double)bits * LOG_V_2(r) + 0.5); |
|
| 3993 |
|
| 3994 } /* end s_mp_outlen() */ |
|
| 3995 |
|
| 3996 /* }}} */ |
|
| 3997 |
|
| 3998 /* }}} */ |
|
| 3999 |
|
| 4000 /*------------------------------------------------------------------------*/ |
|
| 4001 /* HERE THERE BE DRAGONS */ |
|