src/protocols/sametime/meanwhile/mpi/mpi.c

changeset 12957
9af807a5c9e7
parent 12956
39a4efae983c
child 12958
706645a0b944
--- a/src/protocols/sametime/meanwhile/mpi/mpi.c	Fri Jan 20 00:19:53 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,4001 +0,0 @@
-/*
-    mpi.c
-
-    by Michael J. Fromberger <http://www.dartmouth.edu/~sting/>
-    Copyright (C) 1998 Michael J. Fromberger, All Rights Reserved
-
-    Arbitrary precision integer arithmetic library
-
-    $Id: mpi.c 14563 2005-11-29 23:31:40Z taliesein $
- */
-
-#include "mpi.h"
-#include <stdlib.h>
-#include <string.h>
-#include <ctype.h>
-
-#if MP_DEBUG
-#include <stdio.h>
-
-#define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}
-#else
-#define DIAG(T,V)
-#endif
-
-/* 
-   If MP_LOGTAB is not defined, use the math library to compute the
-   logarithms on the fly.  Otherwise, use the static table below.
-   Pick which works best for your system.
- */
-#if MP_LOGTAB
-
-/* {{{ s_logv_2[] - log table for 2 in various bases */
-
-/*
-  A table of the logs of 2 for various bases (the 0 and 1 entries of
-  this table are meaningless and should not be referenced).  
-
-  This table is used to compute output lengths for the mp_toradix()
-  function.  Since a number n in radix r takes up about log_r(n)
-  digits, we estimate the output size by taking the least integer
-  greater than log_r(n), where:
-
-  log_r(n) = log_2(n) * log_r(2)
-
-  This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
-  which are the output bases supported.  
- */
-
-#include "logtab.h"
-
-/* }}} */
-#define LOG_V_2(R)  s_logv_2[(R)]
-
-#else
-
-#include <math.h>
-#define LOG_V_2(R)  (log(2.0)/log(R))
-
-#endif
-
-/* Default precision for newly created mp_int's      */
-static unsigned int s_mp_defprec = MP_DEFPREC;
-
-/* {{{ Digit arithmetic macros */
-
-/*
-  When adding and multiplying digits, the results can be larger than
-  can be contained in an mp_digit.  Thus, an mp_word is used.  These
-  macros mask off the upper and lower digits of the mp_word (the
-  mp_word may be more than 2 mp_digits wide, but we only concern
-  ourselves with the low-order 2 mp_digits)
-
-  If your mp_word DOES have more than 2 mp_digits, you need to
-  uncomment the first line, and comment out the second.
- */
-
-/* #define  CARRYOUT(W)  (((W)>>DIGIT_BIT)&MP_DIGIT_MAX) */
-#define  CARRYOUT(W)  ((W)>>DIGIT_BIT)
-#define  ACCUM(W)     ((W)&MP_DIGIT_MAX)
-
-/* }}} */
-
-/* {{{ Comparison constants */
-
-#define  MP_LT       -1
-#define  MP_EQ        0
-#define  MP_GT        1
-
-/* }}} */
-
-/* {{{ Constant strings */
-
-/* Constant strings returned by mp_strerror() */
-static const char *mp_err_string[] = {
-  "unknown result code",     /* say what?            */
-  "boolean true",            /* MP_OKAY, MP_YES      */
-  "boolean false",           /* MP_NO                */
-  "out of memory",           /* MP_MEM               */
-  "argument out of range",   /* MP_RANGE             */
-  "invalid input parameter", /* MP_BADARG            */
-  "result is undefined"      /* MP_UNDEF             */
-};
-
-/* Value to digit maps for radix conversion   */
-
-/* s_dmap_1 - standard digits and letters */
-static const char *s_dmap_1 = 
-  "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
-
-#if 0
-/* s_dmap_2 - base64 ordering for digits  */
-static const char *s_dmap_2 =
-  "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
-#endif
-
-/* }}} */
-
-/* {{{ Static function declarations */
-
-/* 
-   If MP_MACRO is false, these will be defined as actual functions;
-   otherwise, suitable macro definitions will be used.  This works
-   around the fact that ANSI C89 doesn't support an 'inline' keyword
-   (although I hear C9x will ... about bloody time).  At present, the
-   macro definitions are identical to the function bodies, but they'll
-   expand in place, instead of generating a function call.
-
-   I chose these particular functions to be made into macros because
-   some profiling showed they are called a lot on a typical workload,
-   and yet they are primarily housekeeping.
- */
-#if MP_MACRO == 0
- void     s_mp_setz(mp_digit *dp, mp_size count); /* zero digits           */
- void     s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count); /* copy    */
- void    *s_mp_alloc(size_t nb, size_t ni);       /* general allocator     */
- void     s_mp_free(void *ptr);                   /* general free function */
-#else
-
- /* Even if these are defined as macros, we need to respect the settings
-    of the MP_MEMSET and MP_MEMCPY configuration options...
-  */
- #if MP_MEMSET == 0
-  #define  s_mp_setz(dp, count) \
-       {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
- #else
-  #define  s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
- #endif /* MP_MEMSET */
-
- #if MP_MEMCPY == 0
-  #define  s_mp_copy(sp, dp, count) \
-       {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
- #else
-  #define  s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
- #endif /* MP_MEMCPY */
-
- #define  s_mp_alloc(nb, ni)  calloc(nb, ni)
- #define  s_mp_free(ptr) {if(ptr) free(ptr);}
-#endif /* MP_MACRO */
-
-mp_err   s_mp_grow(mp_int *mp, mp_size min);   /* increase allocated size */
-mp_err   s_mp_pad(mp_int *mp, mp_size min);    /* left pad with zeroes    */
-
-void     s_mp_clamp(mp_int *mp);               /* clip leading zeroes     */
-
-void     s_mp_exch(mp_int *a, mp_int *b);      /* swap a and b in place   */
-
-mp_err   s_mp_lshd(mp_int *mp, mp_size p);     /* left-shift by p digits  */
-void     s_mp_rshd(mp_int *mp, mp_size p);     /* right-shift by p digits */
-void     s_mp_div_2d(mp_int *mp, mp_digit d);  /* divide by 2^d in place  */
-void     s_mp_mod_2d(mp_int *mp, mp_digit d);  /* modulo 2^d in place     */
-mp_err   s_mp_mul_2d(mp_int *mp, mp_digit d);  /* multiply by 2^d in place*/
-void     s_mp_div_2(mp_int *mp);               /* divide by 2 in place    */
-mp_err   s_mp_mul_2(mp_int *mp);               /* multiply by 2 in place  */
-mp_digit s_mp_norm(mp_int *a, mp_int *b);      /* normalize for division  */
-mp_err   s_mp_add_d(mp_int *mp, mp_digit d);   /* unsigned digit addition */
-mp_err   s_mp_sub_d(mp_int *mp, mp_digit d);   /* unsigned digit subtract */
-mp_err   s_mp_mul_d(mp_int *mp, mp_digit d);   /* unsigned digit multiply */
-mp_err   s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
-		                               /* unsigned digit divide   */
-mp_err   s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu);
-                                               /* Barrett reduction       */
-mp_err   s_mp_add(mp_int *a, mp_int *b);       /* magnitude addition      */
-mp_err   s_mp_sub(mp_int *a, mp_int *b);       /* magnitude subtract      */
-mp_err   s_mp_mul(mp_int *a, mp_int *b);       /* magnitude multiply      */
-#if 0
-void     s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len);
-                                               /* multiply buffers in place */
-#endif
-#if MP_SQUARE
-mp_err   s_mp_sqr(mp_int *a);                  /* magnitude square        */
-#else
-#define  s_mp_sqr(a) s_mp_mul(a, a)
-#endif
-mp_err   s_mp_div(mp_int *a, mp_int *b);       /* magnitude divide        */
-mp_err   s_mp_2expt(mp_int *a, mp_digit k);    /* a = 2^k                 */
-int      s_mp_cmp(mp_int *a, mp_int *b);       /* magnitude comparison    */
-int      s_mp_cmp_d(mp_int *a, mp_digit d);    /* magnitude digit compare */
-int      s_mp_ispow2(mp_int *v);               /* is v a power of 2?      */
-int      s_mp_ispow2d(mp_digit d);             /* is d a power of 2?      */
-
-int      s_mp_tovalue(char ch, int r);          /* convert ch to value    */
-char     s_mp_todigit(int val, int r, int low); /* convert val to digit   */
-int      s_mp_outlen(int bits, int r);          /* output length in bytes */
-
-/* }}} */
-
-/* {{{ Default precision manipulation */
-
-unsigned int mp_get_prec(void)
-{
-  return s_mp_defprec;
-
-} /* end mp_get_prec() */
-
-void         mp_set_prec(unsigned int prec)
-{
-  if(prec == 0)
-    s_mp_defprec = MP_DEFPREC;
-  else
-    s_mp_defprec = prec;
-
-} /* end mp_set_prec() */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* {{{ mp_init(mp) */
-
-/*
-  mp_init(mp)
-
-  Initialize a new zero-valued mp_int.  Returns MP_OKAY if successful,
-  MP_MEM if memory could not be allocated for the structure.
- */
-
-mp_err mp_init(mp_int *mp)
-{
-  return mp_init_size(mp, s_mp_defprec);
-
-} /* end mp_init() */
-
-/* }}} */
-
-/* {{{ mp_init_array(mp[], count) */
-
-mp_err mp_init_array(mp_int mp[], int count)
-{
-  mp_err  res;
-  int     pos;
-
-  ARGCHK(mp !=NULL && count > 0, MP_BADARG);
-
-  for(pos = 0; pos < count; ++pos) {
-    if((res = mp_init(&mp[pos])) != MP_OKAY)
-      goto CLEANUP;
-  }
-
-  return MP_OKAY;
-
- CLEANUP:
-  while(--pos >= 0) 
-    mp_clear(&mp[pos]);
-
-  return res;
-
-} /* end mp_init_array() */
-
-/* }}} */
-
-/* {{{ mp_init_size(mp, prec) */
-
-/*
-  mp_init_size(mp, prec)
-
-  Initialize a new zero-valued mp_int with at least the given
-  precision; returns MP_OKAY if successful, or MP_MEM if memory could
-  not be allocated for the structure.
- */
-
-mp_err mp_init_size(mp_int *mp, mp_size prec)
-{
-  ARGCHK(mp != NULL && prec > 0, MP_BADARG);
-
-  if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit))) == NULL)
-    return MP_MEM;
-
-  SIGN(mp) = MP_ZPOS;
-  USED(mp) = 1;
-  ALLOC(mp) = prec;
-
-  return MP_OKAY;
-
-} /* end mp_init_size() */
-
-/* }}} */
-
-/* {{{ mp_init_copy(mp, from) */
-
-/*
-  mp_init_copy(mp, from)
-
-  Initialize mp as an exact copy of from.  Returns MP_OKAY if
-  successful, MP_MEM if memory could not be allocated for the new
-  structure.
- */
-
-mp_err mp_init_copy(mp_int *mp, mp_int *from)
-{
-  ARGCHK(mp != NULL && from != NULL, MP_BADARG);
-
-  if(mp == from)
-    return MP_OKAY;
-
-  if((DIGITS(mp) = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL)
-    return MP_MEM;
-
-  s_mp_copy(DIGITS(from), DIGITS(mp), USED(from));
-  USED(mp) = USED(from);
-  ALLOC(mp) = USED(from);
-  SIGN(mp) = SIGN(from);
-
-  return MP_OKAY;
-
-} /* end mp_init_copy() */
-
-/* }}} */
-
-/* {{{ mp_copy(from, to) */
-
-/*
-  mp_copy(from, to)
-
-  Copies the mp_int 'from' to the mp_int 'to'.  It is presumed that
-  'to' has already been initialized (if not, use mp_init_copy()
-  instead). If 'from' and 'to' are identical, nothing happens.
- */
-
-mp_err mp_copy(mp_int *from, mp_int *to)
-{
-  ARGCHK(from != NULL && to != NULL, MP_BADARG);
-
-  if(from == to)
-    return MP_OKAY;
-
-  { /* copy */
-    mp_digit   *tmp;
-
-    /*
-      If the allocated buffer in 'to' already has enough space to hold
-      all the used digits of 'from', we'll re-use it to avoid hitting
-      the memory allocater more than necessary; otherwise, we'd have
-      to grow anyway, so we just allocate a hunk and make the copy as
-      usual
-     */
-    if(ALLOC(to) >= USED(from)) {
-      s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from));
-      s_mp_copy(DIGITS(from), DIGITS(to), USED(from));
-      
-    } else {
-      if((tmp = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL)
-	return MP_MEM;
-
-      s_mp_copy(DIGITS(from), tmp, USED(from));
-
-      if(DIGITS(to) != NULL) {
-#if MP_CRYPTO
-	s_mp_setz(DIGITS(to), ALLOC(to));
-#endif
-	s_mp_free(DIGITS(to));
-      }
-
-      DIGITS(to) = tmp;
-      ALLOC(to) = USED(from);
-    }
-
-    /* Copy the precision and sign from the original */
-    USED(to) = USED(from);
-    SIGN(to) = SIGN(from);
-  } /* end copy */
-
-  return MP_OKAY;
-
-} /* end mp_copy() */
-
-/* }}} */
-
-/* {{{ mp_exch(mp1, mp2) */
-
-/*
-  mp_exch(mp1, mp2)
-
-  Exchange mp1 and mp2 without allocating any intermediate memory
-  (well, unless you count the stack space needed for this call and the
-  locals it creates...).  This cannot fail.
- */
-
-void mp_exch(mp_int *mp1, mp_int *mp2)
-{
-#if MP_ARGCHK == 2
-  assert(mp1 != NULL && mp2 != NULL);
-#else
-  if(mp1 == NULL || mp2 == NULL)
-    return;
-#endif
-
-  s_mp_exch(mp1, mp2);
-
-} /* end mp_exch() */
-
-/* }}} */
-
-/* {{{ mp_clear(mp) */
-
-/*
-  mp_clear(mp)
-
-  Release the storage used by an mp_int, and void its fields so that
-  if someone calls mp_clear() again for the same int later, we won't
-  get tollchocked.
- */
-
-void   mp_clear(mp_int *mp)
-{
-  if(mp == NULL)
-    return;
-
-  if(DIGITS(mp) != NULL) {
-#if MP_CRYPTO
-    s_mp_setz(DIGITS(mp), ALLOC(mp));
-#endif
-    s_mp_free(DIGITS(mp));
-    DIGITS(mp) = NULL;
-  }
-
-  USED(mp) = 0;
-  ALLOC(mp) = 0;
-
-} /* end mp_clear() */
-
-/* }}} */
-
-/* {{{ mp_clear_array(mp[], count) */
-
-void   mp_clear_array(mp_int mp[], int count)
-{
-  ARGCHK(mp != NULL && count > 0, MP_BADARG);
-
-  while(--count >= 0) 
-    mp_clear(&mp[count]);
-
-} /* end mp_clear_array() */
-
-/* }}} */
-
-/* {{{ mp_zero(mp) */
-
-/*
-  mp_zero(mp) 
-
-  Set mp to zero.  Does not change the allocated size of the structure,
-  and therefore cannot fail (except on a bad argument, which we ignore)
- */
-void   mp_zero(mp_int *mp)
-{
-  if(mp == NULL)
-    return;
-
-  s_mp_setz(DIGITS(mp), ALLOC(mp));
-  USED(mp) = 1;
-  SIGN(mp) = MP_ZPOS;
-
-} /* end mp_zero() */
-
-/* }}} */
-
-/* {{{ mp_set(mp, d) */
-
-void   mp_set(mp_int *mp, mp_digit d)
-{
-  if(mp == NULL)
-    return;
-
-  mp_zero(mp);
-  DIGIT(mp, 0) = d;
-
-} /* end mp_set() */
-
-/* }}} */
-
-/* {{{ mp_set_int(mp, z) */
-
-mp_err mp_set_int(mp_int *mp, long z)
-{
-  int            ix;
-  unsigned long  v = abs(z);
-  mp_err         res;
-
-  ARGCHK(mp != NULL, MP_BADARG);
-
-  mp_zero(mp);
-  if(z == 0)
-    return MP_OKAY;  /* shortcut for zero */
-
-  for(ix = sizeof(long) - 1; ix >= 0; ix--) {
-
-    if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY)
-      return res;
-
-    res = s_mp_add_d(mp, 
-		     (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX));
-    if(res != MP_OKAY)
-      return res;
-
-  }
-
-  if(z < 0)
-    SIGN(mp) = MP_NEG;
-
-  return MP_OKAY;
-
-} /* end mp_set_int() */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* {{{ Digit arithmetic */
-
-/* {{{ mp_add_d(a, d, b) */
-
-/*
-  mp_add_d(a, d, b)
-
-  Compute the sum b = a + d, for a single digit d.  Respects the sign of
-  its primary addend (single digits are unsigned anyway).
- */
-
-mp_err mp_add_d(mp_int *a, mp_digit d, mp_int *b)
-{
-  mp_err   res = MP_OKAY;
-
-  ARGCHK(a != NULL && b != NULL, MP_BADARG);
-
-  if((res = mp_copy(a, b)) != MP_OKAY)
-    return res;
-
-  if(SIGN(b) == MP_ZPOS) {
-    res = s_mp_add_d(b, d);
-  } else if(s_mp_cmp_d(b, d) >= 0) {
-    res = s_mp_sub_d(b, d);
-  } else {
-    SIGN(b) = MP_ZPOS;
-
-    DIGIT(b, 0) = d - DIGIT(b, 0);
-  }
-
-  return res;
-
-} /* end mp_add_d() */
-
-/* }}} */
-
-/* {{{ mp_sub_d(a, d, b) */
-
-/*
-  mp_sub_d(a, d, b)
-
-  Compute the difference b = a - d, for a single digit d.  Respects the
-  sign of its subtrahend (single digits are unsigned anyway).
- */
-
-mp_err mp_sub_d(mp_int *a, mp_digit d, mp_int *b)
-{
-  mp_err   res;
-
-  ARGCHK(a != NULL && b != NULL, MP_BADARG);
-
-  if((res = mp_copy(a, b)) != MP_OKAY)
-    return res;
-
-  if(SIGN(b) == MP_NEG) {
-    if((res = s_mp_add_d(b, d)) != MP_OKAY)
-      return res;
-
-  } else if(s_mp_cmp_d(b, d) >= 0) {
-    if((res = s_mp_sub_d(b, d)) != MP_OKAY)
-      return res;
-
-  } else {
-    mp_neg(b, b);
-
-    DIGIT(b, 0) = d - DIGIT(b, 0);
-    SIGN(b) = MP_NEG;
-  }
-
-  if(s_mp_cmp_d(b, 0) == 0)
-    SIGN(b) = MP_ZPOS;
-
-  return MP_OKAY;
-
-} /* end mp_sub_d() */
-
-/* }}} */
-
-/* {{{ mp_mul_d(a, d, b) */
-
-/*
-  mp_mul_d(a, d, b)
-
-  Compute the product b = a * d, for a single digit d.  Respects the sign
-  of its multiplicand (single digits are unsigned anyway)
- */
-
-mp_err mp_mul_d(mp_int *a, mp_digit d, mp_int *b)
-{
-  mp_err  res;
-
-  ARGCHK(a != NULL && b != NULL, MP_BADARG);
-
-  if(d == 0) {
-    mp_zero(b);
-    return MP_OKAY;
-  }
-
-  if((res = mp_copy(a, b)) != MP_OKAY)
-    return res;
-
-  res = s_mp_mul_d(b, d);
-
-  return res;
-
-} /* end mp_mul_d() */
-
-/* }}} */
-
-/* {{{ mp_mul_2(a, c) */
-
-mp_err mp_mul_2(mp_int *a, mp_int *c)
-{
-  mp_err  res;
-
-  ARGCHK(a != NULL && c != NULL, MP_BADARG);
-
-  if((res = mp_copy(a, c)) != MP_OKAY)
-    return res;
-
-  return s_mp_mul_2(c);
-
-} /* end mp_mul_2() */
-
-/* }}} */
-
-/* {{{ mp_div_d(a, d, q, r) */
-
-/*
-  mp_div_d(a, d, q, r)
-
-  Compute the quotient q = a / d and remainder r = a mod d, for a
-  single digit d.  Respects the sign of its divisor (single digits are
-  unsigned anyway).
- */
-
-mp_err mp_div_d(mp_int *a, mp_digit d, mp_int *q, mp_digit *r)
-{
-  mp_err   res;
-  mp_digit rem;
-  int      pow;
-
-  ARGCHK(a != NULL, MP_BADARG);
-
-  if(d == 0)
-    return MP_RANGE;
-
-  /* Shortcut for powers of two ... */
-  if((pow = s_mp_ispow2d(d)) >= 0) {
-    mp_digit  mask;
-
-    mask = (1 << pow) - 1;
-    rem = DIGIT(a, 0) & mask;
-
-    if(q) {
-      mp_copy(a, q);
-      s_mp_div_2d(q, pow);
-    }
-
-    if(r)
-      *r = rem;
-
-    return MP_OKAY;
-  }
-
-  /*
-    If the quotient is actually going to be returned, we'll try to
-    avoid hitting the memory allocator by copying the dividend into it
-    and doing the division there.  This can't be any _worse_ than
-    always copying, and will sometimes be better (since it won't make
-    another copy)
-
-    If it's not going to be returned, we need to allocate a temporary
-    to hold the quotient, which will just be discarded.
-   */
-  if(q) {
-    if((res = mp_copy(a, q)) != MP_OKAY)
-      return res;
-
-    res = s_mp_div_d(q, d, &rem);
-    if(s_mp_cmp_d(q, 0) == MP_EQ)
-      SIGN(q) = MP_ZPOS;
-
-  } else {
-    mp_int  qp;
-
-    if((res = mp_init_copy(&qp, a)) != MP_OKAY)
-      return res;
-
-    res = s_mp_div_d(&qp, d, &rem);
-    if(s_mp_cmp_d(&qp, 0) == 0)
-      SIGN(&qp) = MP_ZPOS;
-
-    mp_clear(&qp);
-  }
-
-  if(r)
-    *r = rem;
-
-  return res;
-
-} /* end mp_div_d() */
-
-/* }}} */
-
-/* {{{ mp_div_2(a, c) */
-
-/*
-  mp_div_2(a, c)
-
-  Compute c = a / 2, disregarding the remainder.
- */
-
-mp_err mp_div_2(mp_int *a, mp_int *c)
-{
-  mp_err  res;
-
-  ARGCHK(a != NULL && c != NULL, MP_BADARG);
-
-  if((res = mp_copy(a, c)) != MP_OKAY)
-    return res;
-
-  s_mp_div_2(c);
-
-  return MP_OKAY;
-
-} /* end mp_div_2() */
-
-/* }}} */
-
-/* {{{ mp_expt_d(a, d, b) */
-
-mp_err mp_expt_d(mp_int *a, mp_digit d, mp_int *c)
-{
-  mp_int   s, x;
-  mp_err   res;
-  mp_sign  cs = MP_ZPOS;
-
-  ARGCHK(a != NULL && c != NULL, MP_BADARG);
-
-  if((res = mp_init(&s)) != MP_OKAY)
-    return res;
-  if((res = mp_init_copy(&x, a)) != MP_OKAY)
-    goto X;
-
-  DIGIT(&s, 0) = 1;
-
-  if((d % 2) == 1)
-    cs = SIGN(a);
-
-  while(d != 0) {
-    if(d & 1) {
-      if((res = s_mp_mul(&s, &x)) != MP_OKAY)
-	goto CLEANUP;
-    }
-
-    d >>= 1;
-
-    if((res = s_mp_sqr(&x)) != MP_OKAY)
-      goto CLEANUP;
-  }
-
-  SIGN(&s) = cs;
-
-  s_mp_exch(&s, c);
-
-CLEANUP:
-  mp_clear(&x);
-X:
-  mp_clear(&s);
-
-  return res;
-
-} /* end mp_expt_d() */
-
-/* }}} */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* {{{ Full arithmetic */
-
-/* {{{ mp_abs(a, b) */
-
-/*
-  mp_abs(a, b)
-
-  Compute b = |a|.  'a' and 'b' may be identical.
- */
-
-mp_err mp_abs(mp_int *a, mp_int *b)
-{
-  mp_err   res;
-
-  ARGCHK(a != NULL && b != NULL, MP_BADARG);
-
-  if((res = mp_copy(a, b)) != MP_OKAY)
-    return res;
-
-  SIGN(b) = MP_ZPOS;
-
-  return MP_OKAY;
-
-} /* end mp_abs() */
-
-/* }}} */
-
-/* {{{ mp_neg(a, b) */
-
-/*
-  mp_neg(a, b)
-
-  Compute b = -a.  'a' and 'b' may be identical.
- */
-
-mp_err mp_neg(mp_int *a, mp_int *b)
-{
-  mp_err   res;
-
-  ARGCHK(a != NULL && b != NULL, MP_BADARG);
-
-  if((res = mp_copy(a, b)) != MP_OKAY)
-    return res;
-
-  if(s_mp_cmp_d(b, 0) == MP_EQ) 
-    SIGN(b) = MP_ZPOS;
-  else 
-    SIGN(b) = (SIGN(b) == MP_NEG) ? MP_ZPOS : MP_NEG;
-
-  return MP_OKAY;
-
-} /* end mp_neg() */
-
-/* }}} */
-
-/* {{{ mp_add(a, b, c) */
-
-/*
-  mp_add(a, b, c)
-
-  Compute c = a + b.  All parameters may be identical.
- */
-
-mp_err mp_add(mp_int *a, mp_int *b, mp_int *c)
-{
-  mp_err  res;
-  int     cmp;
-
-  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
-
-  if(SIGN(a) == SIGN(b)) { /* same sign:  add values, keep sign */
-
-    /* Commutativity of addition lets us do this in either order,
-       so we avoid having to use a temporary even if the result 
-       is supposed to replace the output
-     */
-    if(c == b) {
-      if((res = s_mp_add(c, a)) != MP_OKAY)
-	return res;
-    } else {
-      if(c != a && (res = mp_copy(a, c)) != MP_OKAY)
-	return res;
-
-      if((res = s_mp_add(c, b)) != MP_OKAY) 
-	return res;
-    }
-
-  } else if((cmp = s_mp_cmp(a, b)) > 0) {  /* different sign: a > b   */
-
-    /* If the output is going to be clobbered, we will use a temporary
-       variable; otherwise, we'll do it without touching the memory 
-       allocator at all, if possible
-     */
-    if(c == b) {
-      mp_int  tmp;
-
-      if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
-	return res;
-      if((res = s_mp_sub(&tmp, b)) != MP_OKAY) {
-	mp_clear(&tmp);
-	return res;
-      }
-
-      s_mp_exch(&tmp, c);
-      mp_clear(&tmp);
-
-    } else {
-
-      if(c != a && (res = mp_copy(a, c)) != MP_OKAY)
-	return res;
-      if((res = s_mp_sub(c, b)) != MP_OKAY)
-	return res;
-
-    }
-
-  } else if(cmp == 0) {             /* different sign, a == b   */
-
-    mp_zero(c);
-    return MP_OKAY;
-
-  } else {                          /* different sign: a < b    */
-
-    /* See above... */
-    if(c == a) {
-      mp_int  tmp;
-
-      if((res = mp_init_copy(&tmp, b)) != MP_OKAY)
-	return res;
-      if((res = s_mp_sub(&tmp, a)) != MP_OKAY) {
-	mp_clear(&tmp);
-	return res;
-      }
-
-      s_mp_exch(&tmp, c);
-      mp_clear(&tmp);
-
-    } else {
-
-      if(c != b && (res = mp_copy(b, c)) != MP_OKAY)
-	return res;
-      if((res = s_mp_sub(c, a)) != MP_OKAY)
-	return res;
-
-    }
-  }
-
-  if(USED(c) == 1 && DIGIT(c, 0) == 0)
-    SIGN(c) = MP_ZPOS;
-
-  return MP_OKAY;
-
-} /* end mp_add() */
-
-/* }}} */
-
-/* {{{ mp_sub(a, b, c) */
-
-/*
-  mp_sub(a, b, c)
-
-  Compute c = a - b.  All parameters may be identical.
- */
-
-mp_err mp_sub(mp_int *a, mp_int *b, mp_int *c)
-{
-  mp_err  res;
-  int     cmp;
-
-  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
-
-  if(SIGN(a) != SIGN(b)) {
-    if(c == a) {
-      if((res = s_mp_add(c, b)) != MP_OKAY)
-	return res;
-    } else {
-      if(c != b && ((res = mp_copy(b, c)) != MP_OKAY))
-	return res;
-      if((res = s_mp_add(c, a)) != MP_OKAY)
-	return res;
-      SIGN(c) = SIGN(a);
-    }
-
-  } else if((cmp = s_mp_cmp(a, b)) > 0) { /* Same sign, a > b */
-    if(c == b) {
-      mp_int  tmp;
-
-      if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
-	return res;
-      if((res = s_mp_sub(&tmp, b)) != MP_OKAY) {
-	mp_clear(&tmp);
-	return res;
-      }
-      s_mp_exch(&tmp, c);
-      mp_clear(&tmp);
-
-    } else {
-      if(c != a && ((res = mp_copy(a, c)) != MP_OKAY))
-	return res;
-
-      if((res = s_mp_sub(c, b)) != MP_OKAY)
-	return res;
-    }
-
-  } else if(cmp == 0) {  /* Same sign, equal magnitude */
-    mp_zero(c);
-    return MP_OKAY;
-
-  } else {               /* Same sign, b > a */
-    if(c == a) {
-      mp_int  tmp;
-
-      if((res = mp_init_copy(&tmp, b)) != MP_OKAY)
-	return res;
-
-      if((res = s_mp_sub(&tmp, a)) != MP_OKAY) {
-	mp_clear(&tmp);
-	return res;
-      }
-      s_mp_exch(&tmp, c);
-      mp_clear(&tmp);
-
-    } else {
-      if(c != b && ((res = mp_copy(b, c)) != MP_OKAY)) 
-	return res;
-
-      if((res = s_mp_sub(c, a)) != MP_OKAY)
-	return res;
-    }
-
-    SIGN(c) = !SIGN(b);
-  }
-
-  if(USED(c) == 1 && DIGIT(c, 0) == 0)
-    SIGN(c) = MP_ZPOS;
-
-  return MP_OKAY;
-
-} /* end mp_sub() */
-
-/* }}} */
-
-/* {{{ mp_mul(a, b, c) */
-
-/*
-  mp_mul(a, b, c)
-
-  Compute c = a * b.  All parameters may be identical.
- */
-
-mp_err mp_mul(mp_int *a, mp_int *b, mp_int *c)
-{
-  mp_err   res;
-  mp_sign  sgn;
-
-  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
-
-  sgn = (SIGN(a) == SIGN(b)) ? MP_ZPOS : MP_NEG;
-
-  if(c == b) {
-    if((res = s_mp_mul(c, a)) != MP_OKAY)
-      return res;
-
-  } else {
-    if((res = mp_copy(a, c)) != MP_OKAY)
-      return res;
-
-    if((res = s_mp_mul(c, b)) != MP_OKAY)
-      return res;
-  }
-  
-  if(sgn == MP_ZPOS || s_mp_cmp_d(c, 0) == MP_EQ)
-    SIGN(c) = MP_ZPOS;
-  else
-    SIGN(c) = sgn;
-  
-  return MP_OKAY;
-
-} /* end mp_mul() */
-
-/* }}} */
-
-/* {{{ mp_mul_2d(a, d, c) */
-
-/*
-  mp_mul_2d(a, d, c)
-
-  Compute c = a * 2^d.  a may be the same as c.
- */
-
-mp_err mp_mul_2d(mp_int *a, mp_digit d, mp_int *c)
-{
-  mp_err   res;
-
-  ARGCHK(a != NULL && c != NULL, MP_BADARG);
-
-  if((res = mp_copy(a, c)) != MP_OKAY)
-    return res;
-
-  if(d == 0)
-    return MP_OKAY;
-
-  return s_mp_mul_2d(c, d);
-
-} /* end mp_mul() */
-
-/* }}} */
-
-/* {{{ mp_sqr(a, b) */
-
-#if MP_SQUARE
-mp_err mp_sqr(mp_int *a, mp_int *b)
-{
-  mp_err   res;
-
-  ARGCHK(a != NULL && b != NULL, MP_BADARG);
-
-  if((res = mp_copy(a, b)) != MP_OKAY)
-    return res;
-
-  if((res = s_mp_sqr(b)) != MP_OKAY)
-    return res;
-
-  SIGN(b) = MP_ZPOS;
-
-  return MP_OKAY;
-
-} /* end mp_sqr() */
-#endif
-
-/* }}} */
-
-/* {{{ mp_div(a, b, q, r) */
-
-/*
-  mp_div(a, b, q, r)
-
-  Compute q = a / b and r = a mod b.  Input parameters may be re-used
-  as output parameters.  If q or r is NULL, that portion of the
-  computation will be discarded (although it will still be computed)
-
-  Pay no attention to the hacker behind the curtain.
- */
-
-mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r)
-{
-  mp_err   res;
-  mp_int   qtmp, rtmp;
-  int      cmp;
-
-  ARGCHK(a != NULL && b != NULL, MP_BADARG);
-
-  if(mp_cmp_z(b) == MP_EQ)
-    return MP_RANGE;
-
-  /* If a <= b, we can compute the solution without division, and
-     avoid any memory allocation
-   */
-  if((cmp = s_mp_cmp(a, b)) < 0) {
-    if(r) {
-      if((res = mp_copy(a, r)) != MP_OKAY)
-	return res;
-    }
-
-    if(q) 
-      mp_zero(q);
-
-    return MP_OKAY;
-
-  } else if(cmp == 0) {
-
-    /* Set quotient to 1, with appropriate sign */
-    if(q) {
-      int qneg = (SIGN(a) != SIGN(b));
-
-      mp_set(q, 1);
-      if(qneg)
-	SIGN(q) = MP_NEG;
-    }
-
-    if(r)
-      mp_zero(r);
-
-    return MP_OKAY;
-  }
-
-  /* If we get here, it means we actually have to do some division */
-
-  /* Set up some temporaries... */
-  if((res = mp_init_copy(&qtmp, a)) != MP_OKAY)
-    return res;
-  if((res = mp_init_copy(&rtmp, b)) != MP_OKAY)
-    goto CLEANUP;
-
-  if((res = s_mp_div(&qtmp, &rtmp)) != MP_OKAY)
-    goto CLEANUP;
-
-  /* Compute the signs for the output  */
-  SIGN(&rtmp) = SIGN(a); /* Sr = Sa              */
-  if(SIGN(a) == SIGN(b))
-    SIGN(&qtmp) = MP_ZPOS;  /* Sq = MP_ZPOS if Sa = Sb */
-  else
-    SIGN(&qtmp) = MP_NEG;   /* Sq = MP_NEG if Sa != Sb */
-
-  if(s_mp_cmp_d(&qtmp, 0) == MP_EQ)
-    SIGN(&qtmp) = MP_ZPOS;
-  if(s_mp_cmp_d(&rtmp, 0) == MP_EQ)
-    SIGN(&rtmp) = MP_ZPOS;
-
-  /* Copy output, if it is needed      */
-  if(q) 
-    s_mp_exch(&qtmp, q);
-
-  if(r) 
-    s_mp_exch(&rtmp, r);
-
-CLEANUP:
-  mp_clear(&rtmp);
-  mp_clear(&qtmp);
-
-  return res;
-
-} /* end mp_div() */
-
-/* }}} */
-
-/* {{{ mp_div_2d(a, d, q, r) */
-
-mp_err mp_div_2d(mp_int *a, mp_digit d, mp_int *q, mp_int *r)
-{
-  mp_err  res;
-
-  ARGCHK(a != NULL, MP_BADARG);
-
-  if(q) {
-    if((res = mp_copy(a, q)) != MP_OKAY)
-      return res;
-
-    s_mp_div_2d(q, d);
-  }
-
-  if(r) {
-    if((res = mp_copy(a, r)) != MP_OKAY)
-      return res;
-
-    s_mp_mod_2d(r, d);
-  }
-
-  return MP_OKAY;
-
-} /* end mp_div_2d() */
-
-/* }}} */
-
-/* {{{ mp_expt(a, b, c) */
-
-/*
-  mp_expt(a, b, c)
-
-  Compute c = a ** b, that is, raise a to the b power.  Uses a
-  standard iterative square-and-multiply technique.
- */
-
-mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c)
-{
-  mp_int   s, x;
-  mp_err   res;
-  mp_digit d;
-  int      dig, bit;
-
-  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
-
-  if(mp_cmp_z(b) < 0)
-    return MP_RANGE;
-
-  if((res = mp_init(&s)) != MP_OKAY)
-    return res;
-
-  mp_set(&s, 1);
-
-  if((res = mp_init_copy(&x, a)) != MP_OKAY)
-    goto X;
-
-  /* Loop over low-order digits in ascending order */
-  for(dig = 0; dig < (USED(b) - 1); dig++) {
-    d = DIGIT(b, dig);
-
-    /* Loop over bits of each non-maximal digit */
-    for(bit = 0; bit < DIGIT_BIT; bit++) {
-      if(d & 1) {
-	if((res = s_mp_mul(&s, &x)) != MP_OKAY) 
-	  goto CLEANUP;
-      }
-
-      d >>= 1;
-      
-      if((res = s_mp_sqr(&x)) != MP_OKAY)
-	goto CLEANUP;
-    }
-  }
-
-  /* Consider now the last digit... */
-  d = DIGIT(b, dig);
-
-  while(d) {
-    if(d & 1) {
-      if((res = s_mp_mul(&s, &x)) != MP_OKAY)
-	goto CLEANUP;
-    }
-
-    d >>= 1;
-
-    if((res = s_mp_sqr(&x)) != MP_OKAY)
-      goto CLEANUP;
-  }
-  
-  if(mp_iseven(b))
-    SIGN(&s) = SIGN(a);
-
-  res = mp_copy(&s, c);
-
-CLEANUP:
-  mp_clear(&x);
-X:
-  mp_clear(&s);
-
-  return res;
-
-} /* end mp_expt() */
-
-/* }}} */
-
-/* {{{ mp_2expt(a, k) */
-
-/* Compute a = 2^k */
-
-mp_err mp_2expt(mp_int *a, mp_digit k)
-{
-  ARGCHK(a != NULL, MP_BADARG);
-
-  return s_mp_2expt(a, k);
-
-} /* end mp_2expt() */
-
-/* }}} */
-
-/* {{{ mp_mod(a, m, c) */
-
-/*
-  mp_mod(a, m, c)
-
-  Compute c = a (mod m).  Result will always be 0 <= c < m.
- */
-
-mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c)
-{
-  mp_err  res;
-  int     mag;
-
-  ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
-
-  if(SIGN(m) == MP_NEG)
-    return MP_RANGE;
-
-  /*
-     If |a| > m, we need to divide to get the remainder and take the
-     absolute value.  
-
-     If |a| < m, we don't need to do any division, just copy and adjust
-     the sign (if a is negative).
-
-     If |a| == m, we can simply set the result to zero.
-
-     This order is intended to minimize the average path length of the
-     comparison chain on common workloads -- the most frequent cases are
-     that |a| != m, so we do those first.
-   */
-  if((mag = s_mp_cmp(a, m)) > 0) {
-    if((res = mp_div(a, m, NULL, c)) != MP_OKAY)
-      return res;
-    
-    if(SIGN(c) == MP_NEG) {
-      if((res = mp_add(c, m, c)) != MP_OKAY)
-	return res;
-    }
-
-  } else if(mag < 0) {
-    if((res = mp_copy(a, c)) != MP_OKAY)
-      return res;
-
-    if(mp_cmp_z(a) < 0) {
-      if((res = mp_add(c, m, c)) != MP_OKAY)
-	return res;
-
-    }
-    
-  } else {
-    mp_zero(c);
-
-  }
-
-  return MP_OKAY;
-
-} /* end mp_mod() */
-
-/* }}} */
-
-/* {{{ mp_mod_d(a, d, c) */
-
-/*
-  mp_mod_d(a, d, c)
-
-  Compute c = a (mod d).  Result will always be 0 <= c < d
- */
-mp_err mp_mod_d(mp_int *a, mp_digit d, mp_digit *c)
-{
-  mp_err   res;
-  mp_digit rem;
-
-  ARGCHK(a != NULL && c != NULL, MP_BADARG);
-
-  if(s_mp_cmp_d(a, d) > 0) {
-    if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY)
-      return res;
-
-  } else {
-    if(SIGN(a) == MP_NEG)
-      rem = d - DIGIT(a, 0);
-    else
-      rem = DIGIT(a, 0);
-  }
-
-  if(c)
-    *c = rem;
-
-  return MP_OKAY;
-
-} /* end mp_mod_d() */
-
-/* }}} */
-
-/* {{{ mp_sqrt(a, b) */
-
-/*
-  mp_sqrt(a, b)
-
-  Compute the integer square root of a, and store the result in b.
-  Uses an integer-arithmetic version of Newton's iterative linear
-  approximation technique to determine this value; the result has the
-  following two properties:
-
-     b^2 <= a
-     (b+1)^2 >= a
-
-  It is a range error to pass a negative value.
- */
-mp_err mp_sqrt(mp_int *a, mp_int *b)
-{
-  mp_int   x, t;
-  mp_err   res;
-
-  ARGCHK(a != NULL && b != NULL, MP_BADARG);
-
-  /* Cannot take square root of a negative value */
-  if(SIGN(a) == MP_NEG)
-    return MP_RANGE;
-
-  /* Special cases for zero and one, trivial     */
-  if(mp_cmp_d(a, 0) == MP_EQ || mp_cmp_d(a, 1) == MP_EQ) 
-    return mp_copy(a, b);
-    
-  /* Initialize the temporaries we'll use below  */
-  if((res = mp_init_size(&t, USED(a))) != MP_OKAY)
-    return res;
-
-  /* Compute an initial guess for the iteration as a itself */
-  if((res = mp_init_copy(&x, a)) != MP_OKAY)
-    goto X;
-
-  for(;;) {
-    /* t = (x * x) - a */
-    mp_copy(&x, &t);      /* can't fail, t is big enough for original x */
-    if((res = mp_sqr(&t, &t)) != MP_OKAY ||
-       (res = mp_sub(&t, a, &t)) != MP_OKAY)
-      goto CLEANUP;
-
-    /* t = t / 2x       */
-    s_mp_mul_2(&x);
-    if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY)
-      goto CLEANUP;
-    s_mp_div_2(&x);
-
-    /* Terminate the loop, if the quotient is zero */
-    if(mp_cmp_z(&t) == MP_EQ)
-      break;
-
-    /* x = x - t       */
-    if((res = mp_sub(&x, &t, &x)) != MP_OKAY)
-      goto CLEANUP;
-
-  }
-
-  /* Copy result to output parameter */
-  mp_sub_d(&x, 1, &x);
-  s_mp_exch(&x, b);
-
- CLEANUP:
-  mp_clear(&x);
- X:
-  mp_clear(&t); 
-
-  return res;
-
-} /* end mp_sqrt() */
-
-/* }}} */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* {{{ Modular arithmetic */
-
-#if MP_MODARITH
-/* {{{ mp_addmod(a, b, m, c) */
-
-/*
-  mp_addmod(a, b, m, c)
-
-  Compute c = (a + b) mod m
- */
-
-mp_err mp_addmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
-{
-  mp_err  res;
-
-  ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
-
-  if((res = mp_add(a, b, c)) != MP_OKAY)
-    return res;
-  if((res = mp_mod(c, m, c)) != MP_OKAY)
-    return res;
-
-  return MP_OKAY;
-
-}
-
-/* }}} */
-
-/* {{{ mp_submod(a, b, m, c) */
-
-/*
-  mp_submod(a, b, m, c)
-
-  Compute c = (a - b) mod m
- */
-
-mp_err mp_submod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
-{
-  mp_err  res;
-
-  ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
-
-  if((res = mp_sub(a, b, c)) != MP_OKAY)
-    return res;
-  if((res = mp_mod(c, m, c)) != MP_OKAY)
-    return res;
-
-  return MP_OKAY;
-
-}
-
-/* }}} */
-
-/* {{{ mp_mulmod(a, b, m, c) */
-
-/*
-  mp_mulmod(a, b, m, c)
-
-  Compute c = (a * b) mod m
- */
-
-mp_err mp_mulmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
-{
-  mp_err  res;
-
-  ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
-
-  if((res = mp_mul(a, b, c)) != MP_OKAY)
-    return res;
-  if((res = mp_mod(c, m, c)) != MP_OKAY)
-    return res;
-
-  return MP_OKAY;
-
-}
-
-/* }}} */
-
-/* {{{ mp_sqrmod(a, m, c) */
-
-#if MP_SQUARE
-mp_err mp_sqrmod(mp_int *a, mp_int *m, mp_int *c)
-{
-  mp_err  res;
-
-  ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
-
-  if((res = mp_sqr(a, c)) != MP_OKAY)
-    return res;
-  if((res = mp_mod(c, m, c)) != MP_OKAY)
-    return res;
-
-  return MP_OKAY;
-
-} /* end mp_sqrmod() */
-#endif
-
-/* }}} */
-
-/* {{{ mp_exptmod(a, b, m, c) */
-
-/*
-  mp_exptmod(a, b, m, c)
-
-  Compute c = (a ** b) mod m.  Uses a standard square-and-multiply
-  method with modular reductions at each step. (This is basically the
-  same code as mp_expt(), except for the addition of the reductions)
-  
-  The modular reductions are done using Barrett's algorithm (see
-  s_mp_reduce() below for details)
- */
-
-mp_err mp_exptmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
-{
-  mp_int   s, x, mu;
-  mp_err   res;
-  mp_digit d, *db = DIGITS(b);
-  mp_size  ub = USED(b);
-  int      dig, bit;
-
-  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
-
-  if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0)
-    return MP_RANGE;
-
-  if((res = mp_init(&s)) != MP_OKAY)
-    return res;
-  if((res = mp_init_copy(&x, a)) != MP_OKAY)
-    goto X;
-  if((res = mp_mod(&x, m, &x)) != MP_OKAY ||
-     (res = mp_init(&mu)) != MP_OKAY)
-    goto MU;
-
-  mp_set(&s, 1);
-
-  /* mu = b^2k / m */
-  s_mp_add_d(&mu, 1); 
-  s_mp_lshd(&mu, 2 * USED(m));
-  if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY)
-    goto CLEANUP;
-
-  /* Loop over digits of b in ascending order, except highest order */
-  for(dig = 0; dig < (ub - 1); dig++) {
-    d = *db++;
-
-    /* Loop over the bits of the lower-order digits */
-    for(bit = 0; bit < DIGIT_BIT; bit++) {
-      if(d & 1) {
-	if((res = s_mp_mul(&s, &x)) != MP_OKAY)
-	  goto CLEANUP;
-	if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
-	  goto CLEANUP;
-      }
-
-      d >>= 1;
-
-      if((res = s_mp_sqr(&x)) != MP_OKAY)
-	goto CLEANUP;
-      if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
-	goto CLEANUP;
-    }
-  }
-
-  /* Now do the last digit... */
-  d = *db;
-
-  while(d) {
-    if(d & 1) {
-      if((res = s_mp_mul(&s, &x)) != MP_OKAY)
-	goto CLEANUP;
-      if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
-	goto CLEANUP;
-    }
-
-    d >>= 1;
-
-    if((res = s_mp_sqr(&x)) != MP_OKAY)
-      goto CLEANUP;
-    if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
-      goto CLEANUP;
-  }
-
-  s_mp_exch(&s, c);
-
- CLEANUP:
-  mp_clear(&mu);
- MU:
-  mp_clear(&x);
- X:
-  mp_clear(&s);
-
-  return res;
-
-} /* end mp_exptmod() */
-
-/* }}} */
-
-/* {{{ mp_exptmod_d(a, d, m, c) */
-
-mp_err mp_exptmod_d(mp_int *a, mp_digit d, mp_int *m, mp_int *c)
-{
-  mp_int   s, x;
-  mp_err   res;
-
-  ARGCHK(a != NULL && c != NULL, MP_BADARG);
-
-  if((res = mp_init(&s)) != MP_OKAY)
-    return res;
-  if((res = mp_init_copy(&x, a)) != MP_OKAY)
-    goto X;
-
-  mp_set(&s, 1);
-
-  while(d != 0) {
-    if(d & 1) {
-      if((res = s_mp_mul(&s, &x)) != MP_OKAY ||
-	 (res = mp_mod(&s, m, &s)) != MP_OKAY)
-	goto CLEANUP;
-    }
-
-    d /= 2;
-
-    if((res = s_mp_sqr(&x)) != MP_OKAY ||
-       (res = mp_mod(&x, m, &x)) != MP_OKAY)
-      goto CLEANUP;
-  }
-
-  s_mp_exch(&s, c);
-
-CLEANUP:
-  mp_clear(&x);
-X:
-  mp_clear(&s);
-
-  return res;
-
-} /* end mp_exptmod_d() */
-
-/* }}} */
-#endif /* if MP_MODARITH */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* {{{ Comparison functions */
-
-/* {{{ mp_cmp_z(a) */
-
-/*
-  mp_cmp_z(a)
-
-  Compare a <=> 0.  Returns <0 if a<0, 0 if a=0, >0 if a>0.
- */
-
-int    mp_cmp_z(mp_int *a)
-{
-  if(SIGN(a) == MP_NEG)
-    return MP_LT;
-  else if(USED(a) == 1 && DIGIT(a, 0) == 0)
-    return MP_EQ;
-  else
-    return MP_GT;
-
-} /* end mp_cmp_z() */
-
-/* }}} */
-
-/* {{{ mp_cmp_d(a, d) */
-
-/*
-  mp_cmp_d(a, d)
-
-  Compare a <=> d.  Returns <0 if a<d, 0 if a=d, >0 if a>d
- */
-
-int    mp_cmp_d(mp_int *a, mp_digit d)
-{
-  ARGCHK(a != NULL, MP_EQ);
-
-  if(SIGN(a) == MP_NEG)
-    return MP_LT;
-
-  return s_mp_cmp_d(a, d);
-
-} /* end mp_cmp_d() */
-
-/* }}} */
-
-/* {{{ mp_cmp(a, b) */
-
-int    mp_cmp(mp_int *a, mp_int *b)
-{
-  ARGCHK(a != NULL && b != NULL, MP_EQ);
-
-  if(SIGN(a) == SIGN(b)) {
-    int  mag;
-
-    if((mag = s_mp_cmp(a, b)) == MP_EQ)
-      return MP_EQ;
-
-    if(SIGN(a) == MP_ZPOS)
-      return mag;
-    else
-      return -mag;
-
-  } else if(SIGN(a) == MP_ZPOS) {
-    return MP_GT;
-  } else {
-    return MP_LT;
-  }
-
-} /* end mp_cmp() */
-
-/* }}} */
-
-/* {{{ mp_cmp_mag(a, b) */
-
-/*
-  mp_cmp_mag(a, b)
-
-  Compares |a| <=> |b|, and returns an appropriate comparison result
- */
-
-int    mp_cmp_mag(mp_int *a, mp_int *b)
-{
-  ARGCHK(a != NULL && b != NULL, MP_EQ);
-
-  return s_mp_cmp(a, b);
-
-} /* end mp_cmp_mag() */
-
-/* }}} */
-
-/* {{{ mp_cmp_int(a, z) */
-
-/*
-  This just converts z to an mp_int, and uses the existing comparison
-  routines.  This is sort of inefficient, but it's not clear to me how
-  frequently this wil get used anyway.  For small positive constants,
-  you can always use mp_cmp_d(), and for zero, there is mp_cmp_z().
- */
-int    mp_cmp_int(mp_int *a, long z)
-{
-  mp_int  tmp;
-  int     out;
-
-  ARGCHK(a != NULL, MP_EQ);
-  
-  mp_init(&tmp); mp_set_int(&tmp, z);
-  out = mp_cmp(a, &tmp);
-  mp_clear(&tmp);
-
-  return out;
-
-} /* end mp_cmp_int() */
-
-/* }}} */
-
-/* {{{ mp_isodd(a) */
-
-/*
-  mp_isodd(a)
-
-  Returns a true (non-zero) value if a is odd, false (zero) otherwise.
- */
-int    mp_isodd(mp_int *a)
-{
-  ARGCHK(a != NULL, 0);
-
-  return (DIGIT(a, 0) & 1);
-
-} /* end mp_isodd() */
-
-/* }}} */
-
-/* {{{ mp_iseven(a) */
-
-int    mp_iseven(mp_int *a)
-{
-  return !mp_isodd(a);
-
-} /* end mp_iseven() */
-
-/* }}} */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* {{{ Number theoretic functions */
-
-#if MP_NUMTH
-/* {{{ mp_gcd(a, b, c) */
-
-/*
-  Like the old mp_gcd() function, except computes the GCD using the
-  binary algorithm due to Josef Stein in 1961 (via Knuth).
- */
-mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c)
-{
-  mp_err   res;
-  mp_int   u, v, t;
-  mp_size  k = 0;
-
-  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
-
-  if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ)
-      return MP_RANGE;
-  if(mp_cmp_z(a) == MP_EQ) {
-    if((res = mp_copy(b, c)) != MP_OKAY)
-      return res;
-    SIGN(c) = MP_ZPOS; return MP_OKAY;
-  } else if(mp_cmp_z(b) == MP_EQ) {
-    if((res = mp_copy(a, c)) != MP_OKAY)
-      return res;
-    SIGN(c) = MP_ZPOS; return MP_OKAY;
-  }
-
-  if((res = mp_init(&t)) != MP_OKAY)
-    return res;
-  if((res = mp_init_copy(&u, a)) != MP_OKAY)
-    goto U;
-  if((res = mp_init_copy(&v, b)) != MP_OKAY)
-    goto V;
-
-  SIGN(&u) = MP_ZPOS;
-  SIGN(&v) = MP_ZPOS;
-
-  /* Divide out common factors of 2 until at least 1 of a, b is even */
-  while(mp_iseven(&u) && mp_iseven(&v)) {
-    s_mp_div_2(&u);
-    s_mp_div_2(&v);
-    ++k;
-  }
-
-  /* Initialize t */
-  if(mp_isodd(&u)) {
-    if((res = mp_copy(&v, &t)) != MP_OKAY)
-      goto CLEANUP;
-    
-    /* t = -v */
-    if(SIGN(&v) == MP_ZPOS)
-      SIGN(&t) = MP_NEG;
-    else
-      SIGN(&t) = MP_ZPOS;
-    
-  } else {
-    if((res = mp_copy(&u, &t)) != MP_OKAY)
-      goto CLEANUP;
-
-  }
-
-  for(;;) {
-    while(mp_iseven(&t)) {
-      s_mp_div_2(&t);
-    }
-
-    if(mp_cmp_z(&t) == MP_GT) {
-      if((res = mp_copy(&t, &u)) != MP_OKAY)
-	goto CLEANUP;
-
-    } else {
-      if((res = mp_copy(&t, &v)) != MP_OKAY)
-	goto CLEANUP;
-
-      /* v = -t */
-      if(SIGN(&t) == MP_ZPOS)
-	SIGN(&v) = MP_NEG;
-      else
-	SIGN(&v) = MP_ZPOS;
-    }
-
-    if((res = mp_sub(&u, &v, &t)) != MP_OKAY)
-      goto CLEANUP;
-
-    if(s_mp_cmp_d(&t, 0) == MP_EQ)
-      break;
-  }
-
-  s_mp_2expt(&v, k);       /* v = 2^k   */
-  res = mp_mul(&u, &v, c); /* c = u * v */
-
- CLEANUP:
-  mp_clear(&v);
- V:
-  mp_clear(&u);
- U:
-  mp_clear(&t);
-
-  return res;
-
-} /* end mp_bgcd() */
-
-/* }}} */
-
-/* {{{ mp_lcm(a, b, c) */
-
-/* We compute the least common multiple using the rule:
-
-   ab = [a, b](a, b)
-
-   ... by computing the product, and dividing out the gcd.
- */
-
-mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c)
-{
-  mp_int  gcd, prod;
-  mp_err  res;
-
-  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
-
-  /* Set up temporaries */
-  if((res = mp_init(&gcd)) != MP_OKAY)
-    return res;
-  if((res = mp_init(&prod)) != MP_OKAY)
-    goto GCD;
-
-  if((res = mp_mul(a, b, &prod)) != MP_OKAY)
-    goto CLEANUP;
-  if((res = mp_gcd(a, b, &gcd)) != MP_OKAY)
-    goto CLEANUP;
-
-  res = mp_div(&prod, &gcd, c, NULL);
-
- CLEANUP:
-  mp_clear(&prod);
- GCD:
-  mp_clear(&gcd);
-
-  return res;
-
-} /* end mp_lcm() */
-
-/* }}} */
-
-/* {{{ mp_xgcd(a, b, g, x, y) */
-
-/*
-  mp_xgcd(a, b, g, x, y)
-
-  Compute g = (a, b) and values x and y satisfying Bezout's identity
-  (that is, ax + by = g).  This uses the extended binary GCD algorithm
-  based on the Stein algorithm used for mp_gcd()
- */
-
-mp_err mp_xgcd(mp_int *a, mp_int *b, mp_int *g, mp_int *x, mp_int *y)
-{
-  mp_int   gx, xc, yc, u, v, A, B, C, D;
-  mp_int  *clean[9];
-  mp_err   res;
-  int      last = -1;
-
-  if(mp_cmp_z(b) == 0)
-    return MP_RANGE;
-
-  /* Initialize all these variables we need */
-  if((res = mp_init(&u)) != MP_OKAY) goto CLEANUP;
-  clean[++last] = &u;
-  if((res = mp_init(&v)) != MP_OKAY) goto CLEANUP;
-  clean[++last] = &v;
-  if((res = mp_init(&gx)) != MP_OKAY) goto CLEANUP;
-  clean[++last] = &gx;
-  if((res = mp_init(&A)) != MP_OKAY) goto CLEANUP;
-  clean[++last] = &A;
-  if((res = mp_init(&B)) != MP_OKAY) goto CLEANUP;
-  clean[++last] = &B;
-  if((res = mp_init(&C)) != MP_OKAY) goto CLEANUP;
-  clean[++last] = &C;
-  if((res = mp_init(&D)) != MP_OKAY) goto CLEANUP;
-  clean[++last] = &D;
-  if((res = mp_init_copy(&xc, a)) != MP_OKAY) goto CLEANUP;
-  clean[++last] = &xc;
-  mp_abs(&xc, &xc);
-  if((res = mp_init_copy(&yc, b)) != MP_OKAY) goto CLEANUP;
-  clean[++last] = &yc;
-  mp_abs(&yc, &yc);
-
-  mp_set(&gx, 1);
-
-  /* Divide by two until at least one of them is even */
-  while(mp_iseven(&xc) && mp_iseven(&yc)) {
-    s_mp_div_2(&xc);
-    s_mp_div_2(&yc);
-    if((res = s_mp_mul_2(&gx)) != MP_OKAY)
-      goto CLEANUP;
-  }
-
-  mp_copy(&xc, &u);
-  mp_copy(&yc, &v);
-  mp_set(&A, 1); mp_set(&D, 1);
-
-  /* Loop through binary GCD algorithm */
-  for(;;) {
-    while(mp_iseven(&u)) {
-      s_mp_div_2(&u);
-
-      if(mp_iseven(&A) && mp_iseven(&B)) {
-	s_mp_div_2(&A); s_mp_div_2(&B);
-      } else {
-	if((res = mp_add(&A, &yc, &A)) != MP_OKAY) goto CLEANUP;
-	s_mp_div_2(&A);
-	if((res = mp_sub(&B, &xc, &B)) != MP_OKAY) goto CLEANUP;
-	s_mp_div_2(&B);
-      }
-    }
-
-    while(mp_iseven(&v)) {
-      s_mp_div_2(&v);
-
-      if(mp_iseven(&C) && mp_iseven(&D)) {
-	s_mp_div_2(&C); s_mp_div_2(&D);
-      } else {
-	if((res = mp_add(&C, &yc, &C)) != MP_OKAY) goto CLEANUP;
-	s_mp_div_2(&C);
-	if((res = mp_sub(&D, &xc, &D)) != MP_OKAY) goto CLEANUP;
-	s_mp_div_2(&D);
-      }
-    }
-
-    if(mp_cmp(&u, &v) >= 0) {
-      if((res = mp_sub(&u, &v, &u)) != MP_OKAY) goto CLEANUP;
-      if((res = mp_sub(&A, &C, &A)) != MP_OKAY) goto CLEANUP;
-      if((res = mp_sub(&B, &D, &B)) != MP_OKAY) goto CLEANUP;
-
-    } else {
-      if((res = mp_sub(&v, &u, &v)) != MP_OKAY) goto CLEANUP;
-      if((res = mp_sub(&C, &A, &C)) != MP_OKAY) goto CLEANUP;
-      if((res = mp_sub(&D, &B, &D)) != MP_OKAY) goto CLEANUP;
-
-    }
-
-    /* If we're done, copy results to output */
-    if(mp_cmp_z(&u) == 0) {
-      if(x)
-	if((res = mp_copy(&C, x)) != MP_OKAY) goto CLEANUP;
-
-      if(y)
-	if((res = mp_copy(&D, y)) != MP_OKAY) goto CLEANUP;
-      
-      if(g)
-	if((res = mp_mul(&gx, &v, g)) != MP_OKAY) goto CLEANUP;
-
-      break;
-    }
-  }
-
- CLEANUP:
-  while(last >= 0)
-    mp_clear(clean[last--]);
-
-  return res;
-
-} /* end mp_xgcd() */
-
-/* }}} */
-
-/* {{{ mp_invmod(a, m, c) */
-
-/*
-  mp_invmod(a, m, c)
-
-  Compute c = a^-1 (mod m), if there is an inverse for a (mod m).
-  This is equivalent to the question of whether (a, m) = 1.  If not,
-  MP_UNDEF is returned, and there is no inverse.
- */
-
-mp_err mp_invmod(mp_int *a, mp_int *m, mp_int *c)
-{
-  mp_int  g, x;
-  mp_sign sa;
-  mp_err  res;
-
-  ARGCHK(a && m && c, MP_BADARG);
-
-  if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0)
-    return MP_RANGE;
-
-  sa = SIGN(a);
-
-  if((res = mp_init(&g)) != MP_OKAY)
-    return res;
-  if((res = mp_init(&x)) != MP_OKAY)
-    goto X;
-
-  if((res = mp_xgcd(a, m, &g, &x, NULL)) != MP_OKAY)
-    goto CLEANUP;
-
-  if(mp_cmp_d(&g, 1) != MP_EQ) {
-    res = MP_UNDEF;
-    goto CLEANUP;
-  }
-
-  res = mp_mod(&x, m, c);
-  SIGN(c) = sa;
-
-CLEANUP:
-  mp_clear(&x);
-X:
-  mp_clear(&g);
-
-  return res;
-
-} /* end mp_invmod() */
-
-/* }}} */
-#endif /* if MP_NUMTH */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* {{{ mp_print(mp, ofp) */
-
-#if MP_IOFUNC
-/*
-  mp_print(mp, ofp)
-
-  Print a textual representation of the given mp_int on the output
-  stream 'ofp'.  Output is generated using the internal radix.
- */
-
-void   mp_print(mp_int *mp, FILE *ofp)
-{
-  int   ix;
-
-  if(mp == NULL || ofp == NULL)
-    return;
-
-  fputc((SIGN(mp) == MP_NEG) ? '-' : '+', ofp);
-
-  for(ix = USED(mp) - 1; ix >= 0; ix--) {
-    fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix));
-  }
-
-} /* end mp_print() */
-
-#endif /* if MP_IOFUNC */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* {{{ More I/O Functions */
-
-/* {{{ mp_read_signed_bin(mp, str, len) */
-
-/* 
-   mp_read_signed_bin(mp, str, len)
-
-   Read in a raw value (base 256) into the given mp_int
- */
-
-mp_err  mp_read_signed_bin(mp_int *mp, unsigned char *str, int len)
-{
-  mp_err         res;
-
-  ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
-
-  if((res = mp_read_unsigned_bin(mp, str + 1, len - 1)) == MP_OKAY) {
-    /* Get sign from first byte */
-    if(str[0])
-      SIGN(mp) = MP_NEG;
-    else
-      SIGN(mp) = MP_ZPOS;
-  }
-
-  return res;
-
-} /* end mp_read_signed_bin() */
-
-/* }}} */
-
-/* {{{ mp_signed_bin_size(mp) */
-
-int    mp_signed_bin_size(mp_int *mp)
-{
-  ARGCHK(mp != NULL, 0);
-
-  return mp_unsigned_bin_size(mp) + 1;
-
-} /* end mp_signed_bin_size() */
-
-/* }}} */
-
-/* {{{ mp_to_signed_bin(mp, str) */
-
-mp_err mp_to_signed_bin(mp_int *mp, unsigned char *str)
-{
-  ARGCHK(mp != NULL && str != NULL, MP_BADARG);
-
-  /* Caller responsible for allocating enough memory (use mp_raw_size(mp)) */
-  str[0] = (char)SIGN(mp);
-
-  return mp_to_unsigned_bin(mp, str + 1);
-
-} /* end mp_to_signed_bin() */
-
-/* }}} */
-
-/* {{{ mp_read_unsigned_bin(mp, str, len) */
-
-/*
-  mp_read_unsigned_bin(mp, str, len)
-
-  Read in an unsigned value (base 256) into the given mp_int
- */
-
-mp_err  mp_read_unsigned_bin(mp_int *mp, unsigned char *str, int len)
-{
-  int     ix;
-  mp_err  res;
-
-  ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
-
-  mp_zero(mp);
-
-  for(ix = 0; ix < len; ix++) {
-    if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY)
-      return res;
-
-    if((res = mp_add_d(mp, str[ix], mp)) != MP_OKAY)
-      return res;
-  }
-  
-  return MP_OKAY;
-  
-} /* end mp_read_unsigned_bin() */
-
-/* }}} */
-
-/* {{{ mp_unsigned_bin_size(mp) */
-
-int     mp_unsigned_bin_size(mp_int *mp) 
-{
-  mp_digit   topdig;
-  int        count;
-
-  ARGCHK(mp != NULL, 0);
-
-  /* Special case for the value zero */
-  if(USED(mp) == 1 && DIGIT(mp, 0) == 0)
-    return 1;
-
-  count = (USED(mp) - 1) * sizeof(mp_digit);
-  topdig = DIGIT(mp, USED(mp) - 1);
-
-  while(topdig != 0) {
-    ++count;
-    topdig >>= CHAR_BIT;
-  }
-
-  return count;
-
-} /* end mp_unsigned_bin_size() */
-
-/* }}} */
-
-/* {{{ mp_to_unsigned_bin(mp, str) */
-
-mp_err mp_to_unsigned_bin(mp_int *mp, unsigned char *str)
-{
-  mp_digit      *dp, *end, d;
-  unsigned char *spos;
-
-  ARGCHK(mp != NULL && str != NULL, MP_BADARG);
-
-  dp = DIGITS(mp);
-  end = dp + USED(mp) - 1;
-  spos = str;
-
-  /* Special case for zero, quick test */
-  if(dp == end && *dp == 0) {
-    *str = '\0';
-    return MP_OKAY;
-  }
-
-  /* Generate digits in reverse order */
-  while(dp < end) {
-    int      ix;
-
-    d = *dp;
-    for(ix = 0; ix < sizeof(mp_digit); ++ix) {
-      *spos = d & UCHAR_MAX;
-      d >>= CHAR_BIT;
-      ++spos;
-    }
-
-    ++dp;
-  }
-
-  /* Now handle last digit specially, high order zeroes are not written */
-  d = *end;
-  while(d != 0) {
-    *spos = d & UCHAR_MAX;
-    d >>= CHAR_BIT;
-    ++spos;
-  }
-
-  /* Reverse everything to get digits in the correct order */
-  while(--spos > str) {
-    unsigned char t = *str;
-    *str = *spos;
-    *spos = t;
-
-    ++str;
-  }
-
-  return MP_OKAY;
-
-} /* end mp_to_unsigned_bin() */
-
-/* }}} */
-
-/* {{{ mp_count_bits(mp) */
-
-int    mp_count_bits(mp_int *mp)
-{
-  int      len;
-  mp_digit d;
-
-  ARGCHK(mp != NULL, MP_BADARG);
-
-  len = DIGIT_BIT * (USED(mp) - 1);
-  d = DIGIT(mp, USED(mp) - 1);
-
-  while(d != 0) {
-    ++len;
-    d >>= 1;
-  }
-
-  return len;
-  
-} /* end mp_count_bits() */
-
-/* }}} */
-
-/* {{{ mp_read_radix(mp, str, radix) */
-
-/*
-  mp_read_radix(mp, str, radix)
-
-  Read an integer from the given string, and set mp to the resulting
-  value.  The input is presumed to be in base 10.  Leading non-digit
-  characters are ignored, and the function reads until a non-digit
-  character or the end of the string.
- */
-
-mp_err  mp_read_radix(mp_int *mp, unsigned char *str, int radix)
-{
-  int     ix = 0, val = 0;
-  mp_err  res;
-  mp_sign sig = MP_ZPOS;
-
-  ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX, 
-	 MP_BADARG);
-
-  mp_zero(mp);
-
-  /* Skip leading non-digit characters until a digit or '-' or '+' */
-  while(str[ix] && 
-	(s_mp_tovalue(str[ix], radix) < 0) && 
-	str[ix] != '-' &&
-	str[ix] != '+') {
-    ++ix;
-  }
-
-  if(str[ix] == '-') {
-    sig = MP_NEG;
-    ++ix;
-  } else if(str[ix] == '+') {
-    sig = MP_ZPOS; /* this is the default anyway... */
-    ++ix;
-  }
-
-  while((val = s_mp_tovalue(str[ix], radix)) >= 0) {
-    if((res = s_mp_mul_d(mp, radix)) != MP_OKAY)
-      return res;
-    if((res = s_mp_add_d(mp, val)) != MP_OKAY)
-      return res;
-    ++ix;
-  }
-
-  if(s_mp_cmp_d(mp, 0) == MP_EQ)
-    SIGN(mp) = MP_ZPOS;
-  else
-    SIGN(mp) = sig;
-
-  return MP_OKAY;
-
-} /* end mp_read_radix() */
-
-/* }}} */
-
-/* {{{ mp_radix_size(mp, radix) */
-
-int    mp_radix_size(mp_int *mp, int radix)
-{
-  int  len;
-  ARGCHK(mp != NULL, 0);
-
-  len = s_mp_outlen(mp_count_bits(mp), radix) + 1; /* for NUL terminator */
-
-  if(mp_cmp_z(mp) < 0)
-    ++len; /* for sign */
-
-  return len;
-
-} /* end mp_radix_size() */
-
-/* }}} */
-
-/* {{{ mp_value_radix_size(num, qty, radix) */
-
-/* num = number of digits
-   qty = number of bits per digit
-   radix = target base
-   
-   Return the number of digits in the specified radix that would be
-   needed to express 'num' digits of 'qty' bits each.
- */
-int    mp_value_radix_size(int num, int qty, int radix)
-{
-  ARGCHK(num >= 0 && qty > 0 && radix >= 2 && radix <= MAX_RADIX, 0);
-
-  return s_mp_outlen(num * qty, radix);
-
-} /* end mp_value_radix_size() */
-
-/* }}} */
-
-/* {{{ mp_toradix(mp, str, radix) */
-
-mp_err mp_toradix(mp_int *mp, unsigned char *str, int radix)
-{
-  int  ix, pos = 0;
-
-  ARGCHK(mp != NULL && str != NULL, MP_BADARG);
-  ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE);
-
-  if(mp_cmp_z(mp) == MP_EQ) {
-    str[0] = '0';
-    str[1] = '\0';
-  } else {
-    mp_err   res;
-    mp_int   tmp;
-    mp_sign  sgn;
-    mp_digit rem, rdx = (mp_digit)radix;
-    char     ch;
-
-    if((res = mp_init_copy(&tmp, mp)) != MP_OKAY)
-      return res;
-
-    /* Save sign for later, and take absolute value */
-    sgn = SIGN(&tmp); SIGN(&tmp) = MP_ZPOS;
-
-    /* Generate output digits in reverse order      */
-    while(mp_cmp_z(&tmp) != 0) {
-      if((res = s_mp_div_d(&tmp, rdx, &rem)) != MP_OKAY) {
-	mp_clear(&tmp);
-	return res;
-      }
-
-      /* Generate digits, use capital letters */
-      ch = s_mp_todigit(rem, radix, 0);
-
-      str[pos++] = ch;
-    }
-
-    /* Add - sign if original value was negative */
-    if(sgn == MP_NEG)
-      str[pos++] = '-';
-
-    /* Add trailing NUL to end the string        */
-    str[pos--] = '\0';
-
-    /* Reverse the digits and sign indicator     */
-    ix = 0;
-    while(ix < pos) {
-      char tmp = str[ix];
-
-      str[ix] = str[pos];
-      str[pos] = tmp;
-      ++ix;
-      --pos;
-    }
-    
-    mp_clear(&tmp);
-  }
-
-  return MP_OKAY;
-
-} /* end mp_toradix() */
-
-/* }}} */
-
-/* {{{ mp_char2value(ch, r) */
-
-int    mp_char2value(char ch, int r)
-{
-  return s_mp_tovalue(ch, r);
-
-} /* end mp_tovalue() */
-
-/* }}} */
-
-/* }}} */
-
-/* {{{ mp_strerror(ec) */
-
-/*
-  mp_strerror(ec)
-
-  Return a string describing the meaning of error code 'ec'.  The
-  string returned is allocated in static memory, so the caller should
-  not attempt to modify or free the memory associated with this
-  string.
- */
-const char  *mp_strerror(mp_err ec)
-{
-  int   aec = (ec < 0) ? -ec : ec;
-
-  /* Code values are negative, so the senses of these comparisons
-     are accurate */
-  if(ec < MP_LAST_CODE || ec > MP_OKAY) {
-    return mp_err_string[0];  /* unknown error code */
-  } else {
-    return mp_err_string[aec + 1];
-  }
-
-} /* end mp_strerror() */
-
-/* }}} */
-
-/*========================================================================*/
-/*------------------------------------------------------------------------*/
-/* Static function definitions (internal use only)                        */
-
-/* {{{ Memory management */
-
-/* {{{ s_mp_grow(mp, min) */
-
-/* Make sure there are at least 'min' digits allocated to mp              */
-mp_err   s_mp_grow(mp_int *mp, mp_size min)
-{
-  if(min > ALLOC(mp)) {
-    mp_digit   *tmp;
-
-    /* Set min to next nearest default precision block size */
-    min = ((min + (s_mp_defprec - 1)) / s_mp_defprec) * s_mp_defprec;
-
-    if((tmp = s_mp_alloc(min, sizeof(mp_digit))) == NULL)
-      return MP_MEM;
-
-    s_mp_copy(DIGITS(mp), tmp, USED(mp));
-
-#if MP_CRYPTO
-    s_mp_setz(DIGITS(mp), ALLOC(mp));
-#endif
-    s_mp_free(DIGITS(mp));
-    DIGITS(mp) = tmp;
-    ALLOC(mp) = min;
-  }
-
-  return MP_OKAY;
-
-} /* end s_mp_grow() */
-
-/* }}} */
-
-/* {{{ s_mp_pad(mp, min) */
-
-/* Make sure the used size of mp is at least 'min', growing if needed     */
-mp_err   s_mp_pad(mp_int *mp, mp_size min)
-{
-  if(min > USED(mp)) {
-    mp_err  res;
-
-    /* Make sure there is room to increase precision  */
-    if(min > ALLOC(mp) && (res = s_mp_grow(mp, min)) != MP_OKAY)
-      return res;
-
-    /* Increase precision; should already be 0-filled */
-    USED(mp) = min;
-  }
-
-  return MP_OKAY;
-
-} /* end s_mp_pad() */
-
-/* }}} */
-
-/* {{{ s_mp_setz(dp, count) */
-
-#if MP_MACRO == 0
-/* Set 'count' digits pointed to by dp to be zeroes                       */
-void s_mp_setz(mp_digit *dp, mp_size count)
-{
-#if MP_MEMSET == 0
-  int  ix;
-
-  for(ix = 0; ix < count; ix++)
-    dp[ix] = 0;
-#else
-  memset(dp, 0, count * sizeof(mp_digit));
-#endif
-
-} /* end s_mp_setz() */
-#endif
-
-/* }}} */
-
-/* {{{ s_mp_copy(sp, dp, count) */
-
-#if MP_MACRO == 0
-/* Copy 'count' digits from sp to dp                                      */
-void s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count)
-{
-#if MP_MEMCPY == 0
-  int  ix;
-
-  for(ix = 0; ix < count; ix++)
-    dp[ix] = sp[ix];
-#else
-  memcpy(dp, sp, count * sizeof(mp_digit));
-#endif
-
-} /* end s_mp_copy() */
-#endif
-
-/* }}} */
-
-/* {{{ s_mp_alloc(nb, ni) */
-
-#if MP_MACRO == 0
-/* Allocate ni records of nb bytes each, and return a pointer to that     */
-void    *s_mp_alloc(size_t nb, size_t ni)
-{
-  return calloc(nb, ni);
-
-} /* end s_mp_alloc() */
-#endif
-
-/* }}} */
-
-/* {{{ s_mp_free(ptr) */
-
-#if MP_MACRO == 0
-/* Free the memory pointed to by ptr                                      */
-void     s_mp_free(void *ptr)
-{
-  if(ptr)
-    free(ptr);
-
-} /* end s_mp_free() */
-#endif
-
-/* }}} */
-
-/* {{{ s_mp_clamp(mp) */
-
-/* Remove leading zeroes from the given value                             */
-void     s_mp_clamp(mp_int *mp)
-{
-  mp_size   du = USED(mp);
-  mp_digit *zp = DIGITS(mp) + du - 1;
-
-  while(du > 1 && !*zp--)
-    --du;
-
-  if(du == 1 && *zp == 0)
-    SIGN(mp) = MP_ZPOS;
-
-  USED(mp) = du;
-
-} /* end s_mp_clamp() */
-
-
-/* }}} */
-
-/* {{{ s_mp_exch(a, b) */
-
-/* Exchange the data for a and b; (b, a) = (a, b)                         */
-void     s_mp_exch(mp_int *a, mp_int *b)
-{
-  mp_int   tmp;
-
-  tmp = *a;
-  *a = *b;
-  *b = tmp;
-
-} /* end s_mp_exch() */
-
-/* }}} */
-
-/* }}} */
-
-/* {{{ Arithmetic helpers */
-
-/* {{{ s_mp_lshd(mp, p) */
-
-/* 
-   Shift mp leftward by p digits, growing if needed, and zero-filling
-   the in-shifted digits at the right end.  This is a convenient
-   alternative to multiplication by powers of the radix
- */   
-
-mp_err   s_mp_lshd(mp_int *mp, mp_size p)
-{
-  mp_err   res;
-  mp_size  pos;
-  mp_digit *dp;
-  int     ix;
-
-  if(p == 0)
-    return MP_OKAY;
-
-  if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY)
-    return res;
-
-  pos = USED(mp) - 1;
-  dp = DIGITS(mp);
-
-  /* Shift all the significant figures over as needed */
-  for(ix = pos - p; ix >= 0; ix--) 
-    dp[ix + p] = dp[ix];
-
-  /* Fill the bottom digits with zeroes */
-  for(ix = 0; ix < p; ix++)
-    dp[ix] = 0;
-
-  return MP_OKAY;
-
-} /* end s_mp_lshd() */
-
-/* }}} */
-
-/* {{{ s_mp_rshd(mp, p) */
-
-/* 
-   Shift mp rightward by p digits.  Maintains the invariant that
-   digits above the precision are all zero.  Digits shifted off the
-   end are lost.  Cannot fail.
- */
-
-void     s_mp_rshd(mp_int *mp, mp_size p)
-{
-  mp_size  ix;
-  mp_digit *dp;
-
-  if(p == 0)
-    return;
-
-  /* Shortcut when all digits are to be shifted off */
-  if(p >= USED(mp)) {
-    s_mp_setz(DIGITS(mp), ALLOC(mp));
-    USED(mp) = 1;
-    SIGN(mp) = MP_ZPOS;
-    return;
-  }
-
-  /* Shift all the significant figures over as needed */
-  dp = DIGITS(mp);
-  for(ix = p; ix < USED(mp); ix++)
-    dp[ix - p] = dp[ix];
-
-  /* Fill the top digits with zeroes */
-  ix -= p;
-  while(ix < USED(mp))
-    dp[ix++] = 0;
-
-  /* Strip off any leading zeroes    */
-  s_mp_clamp(mp);
-
-} /* end s_mp_rshd() */
-
-/* }}} */
-
-/* {{{ s_mp_div_2(mp) */
-
-/* Divide by two -- take advantage of radix properties to do it fast      */
-void     s_mp_div_2(mp_int *mp)
-{
-  s_mp_div_2d(mp, 1);
-
-} /* end s_mp_div_2() */
-
-/* }}} */
-
-/* {{{ s_mp_mul_2(mp) */
-
-mp_err s_mp_mul_2(mp_int *mp)
-{
-  int      ix;
-  mp_digit kin = 0, kout, *dp = DIGITS(mp);
-  mp_err   res;
-
-  /* Shift digits leftward by 1 bit */
-  for(ix = 0; ix < USED(mp); ix++) {
-    kout = (dp[ix] >> (DIGIT_BIT - 1)) & 1;
-    dp[ix] = (dp[ix] << 1) | kin;
-
-    kin = kout;
-  }
-
-  /* Deal with rollover from last digit */
-  if(kin) {
-    if(ix >= ALLOC(mp)) {
-      if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY)
-	return res;
-      dp = DIGITS(mp);
-    }
-
-    dp[ix] = kin;
-    USED(mp) += 1;
-  }
-
-  return MP_OKAY;
-
-} /* end s_mp_mul_2() */
-
-/* }}} */
-
-/* {{{ s_mp_mod_2d(mp, d) */
-
-/*
-  Remainder the integer by 2^d, where d is a number of bits.  This
-  amounts to a bitwise AND of the value, and does not require the full
-  division code
- */
-void     s_mp_mod_2d(mp_int *mp, mp_digit d)
-{
-  unsigned int  ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT);
-  unsigned int  ix;
-  mp_digit      dmask, *dp = DIGITS(mp);
-
-  if(ndig >= USED(mp))
-    return;
-
-  /* Flush all the bits above 2^d in its digit */
-  dmask = (1 << nbit) - 1;
-  dp[ndig] &= dmask;
-
-  /* Flush all digits above the one with 2^d in it */
-  for(ix = ndig + 1; ix < USED(mp); ix++)
-    dp[ix] = 0;
-
-  s_mp_clamp(mp);
-
-} /* end s_mp_mod_2d() */
-
-/* }}} */
-
-/* {{{ s_mp_mul_2d(mp, d) */
-
-/*
-  Multiply by the integer 2^d, where d is a number of bits.  This
-  amounts to a bitwise shift of the value, and does not require the
-  full multiplication code.
- */
-mp_err    s_mp_mul_2d(mp_int *mp, mp_digit d)
-{
-  mp_err   res;
-  mp_digit save, next, mask, *dp;
-  mp_size  used;
-  int      ix;
-
-  if((res = s_mp_lshd(mp, d / DIGIT_BIT)) != MP_OKAY)
-    return res;
-
-  dp = DIGITS(mp); used = USED(mp);
-  d %= DIGIT_BIT;
-
-  mask = (1 << d) - 1;
-
-  /* If the shift requires another digit, make sure we've got one to
-     work with */
-  if((dp[used - 1] >> (DIGIT_BIT - d)) & mask) {
-    if((res = s_mp_grow(mp, used + 1)) != MP_OKAY)
-      return res;
-    dp = DIGITS(mp);
-  }
-
-  /* Do the shifting... */
-  save = 0;
-  for(ix = 0; ix < used; ix++) {
-    next = (dp[ix] >> (DIGIT_BIT - d)) & mask;
-    dp[ix] = (dp[ix] << d) | save;
-    save = next;
-  }
-
-  /* If, at this point, we have a nonzero carryout into the next
-     digit, we'll increase the size by one digit, and store it...
-   */
-  if(save) {
-    dp[used] = save;
-    USED(mp) += 1;
-  }
-
-  s_mp_clamp(mp);
-  return MP_OKAY;
-
-} /* end s_mp_mul_2d() */
-
-/* }}} */
-
-/* {{{ s_mp_div_2d(mp, d) */
-
-/*
-  Divide the integer by 2^d, where d is a number of bits.  This
-  amounts to a bitwise shift of the value, and does not require the
-  full division code (used in Barrett reduction, see below)
- */
-void     s_mp_div_2d(mp_int *mp, mp_digit d)
-{
-  int       ix;
-  mp_digit  save, next, mask, *dp = DIGITS(mp);
-
-  s_mp_rshd(mp, d / DIGIT_BIT);
-  d %= DIGIT_BIT;
-
-  mask = (1 << d) - 1;
-
-  save = 0;
-  for(ix = USED(mp) - 1; ix >= 0; ix--) {
-    next = dp[ix] & mask;
-    dp[ix] = (dp[ix] >> d) | (save << (DIGIT_BIT - d));
-    save = next;
-  }
-
-  s_mp_clamp(mp);
-
-} /* end s_mp_div_2d() */
-
-/* }}} */
-
-/* {{{ s_mp_norm(a, b) */
-
-/*
-  s_mp_norm(a, b)
-
-  Normalize a and b for division, where b is the divisor.  In order
-  that we might make good guesses for quotient digits, we want the
-  leading digit of b to be at least half the radix, which we
-  accomplish by multiplying a and b by a constant.  This constant is
-  returned (so that it can be divided back out of the remainder at the
-  end of the division process).
-
-  We multiply by the smallest power of 2 that gives us a leading digit
-  at least half the radix.  By choosing a power of 2, we simplify the 
-  multiplication and division steps to simple shifts.
- */
-mp_digit s_mp_norm(mp_int *a, mp_int *b)
-{
-  mp_digit  t, d = 0;
-
-  t = DIGIT(b, USED(b) - 1);
-  while(t < (RADIX / 2)) {
-    t <<= 1;
-    ++d;
-  }
-    
-  if(d != 0) {
-    s_mp_mul_2d(a, d);
-    s_mp_mul_2d(b, d);
-  }
-
-  return d;
-
-} /* end s_mp_norm() */
-
-/* }}} */
-
-/* }}} */
-
-/* {{{ Primitive digit arithmetic */
-
-/* {{{ s_mp_add_d(mp, d) */
-
-/* Add d to |mp| in place                                                 */
-mp_err   s_mp_add_d(mp_int *mp, mp_digit d)    /* unsigned digit addition */
-{
-  mp_word   w, k = 0;
-  mp_size   ix = 1, used = USED(mp);
-  mp_digit *dp = DIGITS(mp);
-
-  w = dp[0] + d;
-  dp[0] = ACCUM(w);
-  k = CARRYOUT(w);
-
-  while(ix < used && k) {
-    w = dp[ix] + k;
-    dp[ix] = ACCUM(w);
-    k = CARRYOUT(w);
-    ++ix;
-  }
-
-  if(k != 0) {
-    mp_err  res;
-
-    if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY)
-      return res;
-
-    DIGIT(mp, ix) = k;
-  }
-
-  return MP_OKAY;
-
-} /* end s_mp_add_d() */
-
-/* }}} */
-
-/* {{{ s_mp_sub_d(mp, d) */
-
-/* Subtract d from |mp| in place, assumes |mp| > d                        */
-mp_err   s_mp_sub_d(mp_int *mp, mp_digit d)    /* unsigned digit subtract */
-{
-  mp_word   w, b = 0;
-  mp_size   ix = 1, used = USED(mp);
-  mp_digit *dp = DIGITS(mp);
-
-  /* Compute initial subtraction    */
-  w = (RADIX + dp[0]) - d;
-  b = CARRYOUT(w) ? 0 : 1;
-  dp[0] = ACCUM(w);
-
-  /* Propagate borrows leftward     */
-  while(b && ix < used) {
-    w = (RADIX + dp[ix]) - b;
-    b = CARRYOUT(w) ? 0 : 1;
-    dp[ix] = ACCUM(w);
-    ++ix;
-  }
-
-  /* Remove leading zeroes          */
-  s_mp_clamp(mp);
-
-  /* If we have a borrow out, it's a violation of the input invariant */
-  if(b)
-    return MP_RANGE;
-  else
-    return MP_OKAY;
-
-} /* end s_mp_sub_d() */
-
-/* }}} */
-
-/* {{{ s_mp_mul_d(a, d) */
-
-/* Compute a = a * d, single digit multiplication                         */
-mp_err   s_mp_mul_d(mp_int *a, mp_digit d)
-{
-  mp_word w, k = 0;
-  mp_size ix, max;
-  mp_err  res;
-  mp_digit *dp = DIGITS(a);
-
-  /*
-    Single-digit multiplication will increase the precision of the
-    output by at most one digit.  However, we can detect when this
-    will happen -- if the high-order digit of a, times d, gives a
-    two-digit result, then the precision of the result will increase;
-    otherwise it won't.  We use this fact to avoid calling s_mp_pad()
-    unless absolutely necessary.
-   */
-  max = USED(a);
-  w = dp[max - 1] * d;
-  if(CARRYOUT(w) != 0) {
-    if((res = s_mp_pad(a, max + 1)) != MP_OKAY)
-      return res;
-    dp = DIGITS(a);
-  }
-
-  for(ix = 0; ix < max; ix++) {
-    w = (dp[ix] * d) + k;
-    dp[ix] = ACCUM(w);
-    k = CARRYOUT(w);
-  }
-
-  /* If there is a precision increase, take care of it here; the above
-     test guarantees we have enough storage to do this safely.
-   */
-  if(k) {
-    dp[max] = k; 
-    USED(a) = max + 1;
-  }
-
-  s_mp_clamp(a);
-
-  return MP_OKAY;
-  
-} /* end s_mp_mul_d() */
-
-/* }}} */
-
-/* {{{ s_mp_div_d(mp, d, r) */
-
-/*
-  s_mp_div_d(mp, d, r)
-
-  Compute the quotient mp = mp / d and remainder r = mp mod d, for a
-  single digit d.  If r is null, the remainder will be discarded.
- */
-
-mp_err   s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r)
-{
-  mp_word   w = 0, t;
-  mp_int    quot;
-  mp_err    res;
-  mp_digit *dp = DIGITS(mp), *qp;
-  int       ix;
-
-  if(d == 0)
-    return MP_RANGE;
-
-  /* Make room for the quotient */
-  if((res = mp_init_size(&quot, USED(mp))) != MP_OKAY)
-    return res;
-
-  USED(&quot) = USED(mp); /* so clamping will work below */
-  qp = DIGITS(&quot);
-
-  /* Divide without subtraction */
-  for(ix = USED(mp) - 1; ix >= 0; ix--) {
-    w = (w << DIGIT_BIT) | dp[ix];
-
-    if(w >= d) {
-      t = w / d;
-      w = w % d;
-    } else {
-      t = 0;
-    }
-
-    qp[ix] = t;
-  }
-
-  /* Deliver the remainder, if desired */
-  if(r)
-    *r = w;
-
-  s_mp_clamp(&quot);
-  mp_exch(&quot, mp);
-  mp_clear(&quot);
-
-  return MP_OKAY;
-
-} /* end s_mp_div_d() */
-
-/* }}} */
-
-/* }}} */
-
-/* {{{ Primitive full arithmetic */
-
-/* {{{ s_mp_add(a, b) */
-
-/* Compute a = |a| + |b|                                                  */
-mp_err   s_mp_add(mp_int *a, mp_int *b)        /* magnitude addition      */
-{
-  mp_word   w = 0;
-  mp_digit *pa, *pb;
-  mp_size   ix, used = USED(b);
-  mp_err    res;
-
-  /* Make sure a has enough precision for the output value */
-  if((used > USED(a)) && (res = s_mp_pad(a, used)) != MP_OKAY)
-    return res;
-
-  /*
-    Add up all digits up to the precision of b.  If b had initially
-    the same precision as a, or greater, we took care of it by the
-    padding step above, so there is no problem.  If b had initially
-    less precision, we'll have to make sure the carry out is duly
-    propagated upward among the higher-order digits of the sum.
-   */
-  pa = DIGITS(a);
-  pb = DIGITS(b);
-  for(ix = 0; ix < used; ++ix) {
-    w += *pa + *pb++;
-    *pa++ = ACCUM(w);
-    w = CARRYOUT(w);
-  }
-
-  /* If we run out of 'b' digits before we're actually done, make
-     sure the carries get propagated upward...  
-   */
-  used = USED(a);
-  while(w && ix < used) {
-    w += *pa;
-    *pa++ = ACCUM(w);
-    w = CARRYOUT(w);
-    ++ix;
-  }
-
-  /* If there's an overall carry out, increase precision and include
-     it.  We could have done this initially, but why touch the memory
-     allocator unless we're sure we have to?
-   */
-  if(w) {
-    if((res = s_mp_pad(a, used + 1)) != MP_OKAY)
-      return res;
-
-    DIGIT(a, ix) = w;  /* pa may not be valid after s_mp_pad() call */
-  }
-
-  return MP_OKAY;
-
-} /* end s_mp_add() */
-
-/* }}} */
-
-/* {{{ s_mp_sub(a, b) */
-
-/* Compute a = |a| - |b|, assumes |a| >= |b|                              */
-mp_err   s_mp_sub(mp_int *a, mp_int *b)        /* magnitude subtract      */
-{
-  mp_word   w = 0;
-  mp_digit *pa, *pb;
-  mp_size   ix, used = USED(b);
-
-  /*
-    Subtract and propagate borrow.  Up to the precision of b, this
-    accounts for the digits of b; after that, we just make sure the
-    carries get to the right place.  This saves having to pad b out to
-    the precision of a just to make the loops work right...
-   */
-  pa = DIGITS(a);
-  pb = DIGITS(b);
-
-  for(ix = 0; ix < used; ++ix) {
-    w = (RADIX + *pa) - w - *pb++;
-    *pa++ = ACCUM(w);
-    w = CARRYOUT(w) ? 0 : 1;
-  }
-
-  used = USED(a);
-  while(ix < used) {
-    w = RADIX + *pa - w;
-    *pa++ = ACCUM(w);
-    w = CARRYOUT(w) ? 0 : 1;
-    ++ix;
-  }
-
-  /* Clobber any leading zeroes we created    */
-  s_mp_clamp(a);
-
-  /* 
-     If there was a borrow out, then |b| > |a| in violation
-     of our input invariant.  We've already done the work,
-     but we'll at least complain about it...
-   */
-  if(w)
-    return MP_RANGE;
-  else
-    return MP_OKAY;
-
-} /* end s_mp_sub() */
-
-/* }}} */
-
-/* {{{ s_mp_mul(a, b) */
-
-/* Compute a = |a| * |b|                                                  */
-mp_err   s_mp_mul(mp_int *a, mp_int *b)
-{
-  mp_word   w, k = 0;
-  mp_int    tmp;
-  mp_err    res;
-  mp_size   ix, jx, ua = USED(a), ub = USED(b);
-  mp_digit *pa, *pb, *pt, *pbt;
-
-  if((res = mp_init_size(&tmp, ua + ub)) != MP_OKAY)
-    return res;
-
-  /* This has the effect of left-padding with zeroes... */
-  USED(&tmp) = ua + ub;
-
-  /* We're going to need the base value each iteration */
-  pbt = DIGITS(&tmp);
-
-  /* Outer loop:  Digits of b */
-
-  pb = DIGITS(b);
-  for(ix = 0; ix < ub; ++ix, ++pb) {
-    if(*pb == 0) 
-      continue;
-
-    /* Inner product:  Digits of a */
-    pa = DIGITS(a);
-    for(jx = 0; jx < ua; ++jx, ++pa) {
-      pt = pbt + ix + jx;
-      w = *pb * *pa + k + *pt;
-      *pt = ACCUM(w);
-      k = CARRYOUT(w);
-    }
-
-    pbt[ix + jx] = k;
-    k = 0;
-  }
-
-  s_mp_clamp(&tmp);
-  s_mp_exch(&tmp, a);
-
-  mp_clear(&tmp);
-
-  return MP_OKAY;
-
-} /* end s_mp_mul() */
-
-/* }}} */
-
-/* {{{ s_mp_kmul(a, b, out, len) */
-
-#if 0
-void   s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len)
-{
-  mp_word   w, k = 0;
-  mp_size   ix, jx;
-  mp_digit *pa, *pt;
-
-  for(ix = 0; ix < len; ++ix, ++b) {
-    if(*b == 0)
-      continue;
-    
-    pa = a;
-    for(jx = 0; jx < len; ++jx, ++pa) {
-      pt = out + ix + jx;
-      w = *b * *pa + k + *pt;
-      *pt = ACCUM(w);
-      k = CARRYOUT(w);
-    }
-
-    out[ix + jx] = k;
-    k = 0;
-  }
-
-} /* end s_mp_kmul() */
-#endif
-
-/* }}} */
-
-/* {{{ s_mp_sqr(a) */
-
-/*
-  Computes the square of a, in place.  This can be done more
-  efficiently than a general multiplication, because many of the
-  computation steps are redundant when squaring.  The inner product
-  step is a bit more complicated, but we save a fair number of
-  iterations of the multiplication loop.
- */
-#if MP_SQUARE
-mp_err   s_mp_sqr(mp_int *a)
-{
-  mp_word  w, k = 0;
-  mp_int   tmp;
-  mp_err   res;
-  mp_size  ix, jx, kx, used = USED(a);
-  mp_digit *pa1, *pa2, *pt, *pbt;
-
-  if((res = mp_init_size(&tmp, 2 * used)) != MP_OKAY)
-    return res;
-
-  /* Left-pad with zeroes */
-  USED(&tmp) = 2 * used;
-
-  /* We need the base value each time through the loop */
-  pbt = DIGITS(&tmp);
-
-  pa1 = DIGITS(a);
-  for(ix = 0; ix < used; ++ix, ++pa1) {
-    if(*pa1 == 0)
-      continue;
-
-    w = DIGIT(&tmp, ix + ix) + (*pa1 * *pa1);
-
-    pbt[ix + ix] = ACCUM(w);
-    k = CARRYOUT(w);
-
-    /*
-      The inner product is computed as:
-
-         (C, S) = t[i,j] + 2 a[i] a[j] + C
-
-      This can overflow what can be represented in an mp_word, and
-      since C arithmetic does not provide any way to check for
-      overflow, we have to check explicitly for overflow conditions
-      before they happen.
-     */
-    for(jx = ix + 1, pa2 = DIGITS(a) + jx; jx < used; ++jx, ++pa2) {
-      mp_word  u = 0, v;
-      
-      /* Store this in a temporary to avoid indirections later */
-      pt = pbt + ix + jx;
-
-      /* Compute the multiplicative step */
-      w = *pa1 * *pa2;
-
-      /* If w is more than half MP_WORD_MAX, the doubling will
-	 overflow, and we need to record a carry out into the next
-	 word */
-      u = (w >> (MP_WORD_BIT - 1)) & 1;
-
-      /* Double what we've got, overflow will be ignored as defined
-	 for C arithmetic (we've already noted if it is to occur)
-       */
-      w *= 2;
-
-      /* Compute the additive step */
-      v = *pt + k;
-
-      /* If we do not already have an overflow carry, check to see
-	 if the addition will cause one, and set the carry out if so 
-       */
-      u |= ((MP_WORD_MAX - v) < w);
-
-      /* Add in the rest, again ignoring overflow */
-      w += v;
-
-      /* Set the i,j digit of the output */
-      *pt = ACCUM(w);
-
-      /* Save carry information for the next iteration of the loop.
-	 This is why k must be an mp_word, instead of an mp_digit */
-      k = CARRYOUT(w) | (u << DIGIT_BIT);
-
-    } /* for(jx ...) */
-
-    /* Set the last digit in the cycle and reset the carry */
-    k = DIGIT(&tmp, ix + jx) + k;
-    pbt[ix + jx] = ACCUM(k);
-    k = CARRYOUT(k);
-
-    /* If we are carrying out, propagate the carry to the next digit
-       in the output.  This may cascade, so we have to be somewhat
-       circumspect -- but we will have enough precision in the output
-       that we won't overflow 
-     */
-    kx = 1;
-    while(k) {
-      k = pbt[ix + jx + kx] + 1;
-      pbt[ix + jx + kx] = ACCUM(k);
-      k = CARRYOUT(k);
-      ++kx;
-    }
-  } /* for(ix ...) */
-
-  s_mp_clamp(&tmp);
-  s_mp_exch(&tmp, a);
-
-  mp_clear(&tmp);
-
-  return MP_OKAY;
-
-} /* end s_mp_sqr() */
-#endif
-
-/* }}} */
-
-/* {{{ s_mp_div(a, b) */
-
-/*
-  s_mp_div(a, b)
-
-  Compute a = a / b and b = a mod b.  Assumes b > a.
- */
-
-mp_err   s_mp_div(mp_int *a, mp_int *b)
-{
-  mp_int   quot, rem, t;
-  mp_word  q;
-  mp_err   res;
-  mp_digit d;
-  int      ix;
-
-  if(mp_cmp_z(b) == 0)
-    return MP_RANGE;
-
-  /* Shortcut if b is power of two */
-  if((ix = s_mp_ispow2(b)) >= 0) {
-    mp_copy(a, b);  /* need this for remainder */
-    s_mp_div_2d(a, (mp_digit)ix);
-    s_mp_mod_2d(b, (mp_digit)ix);
-
-    return MP_OKAY;
-  }
-
-  /* Allocate space to store the quotient */
-  if((res = mp_init_size(&quot, USED(a))) != MP_OKAY)
-    return res;
-
-  /* A working temporary for division     */
-  if((res = mp_init_size(&t, USED(a))) != MP_OKAY)
-    goto T;
-
-  /* Allocate space for the remainder     */
-  if((res = mp_init_size(&rem, USED(a))) != MP_OKAY)
-    goto REM;
-
-  /* Normalize to optimize guessing       */
-  d = s_mp_norm(a, b);
-
-  /* Perform the division itself...woo!   */
-  ix = USED(a) - 1;
-
-  while(ix >= 0) {
-    /* Find a partial substring of a which is at least b */
-    while(s_mp_cmp(&rem, b) < 0 && ix >= 0) {
-      if((res = s_mp_lshd(&rem, 1)) != MP_OKAY) 
-	goto CLEANUP;
-
-      if((res = s_mp_lshd(&quot, 1)) != MP_OKAY)
-	goto CLEANUP;
-
-      DIGIT(&rem, 0) = DIGIT(a, ix);
-      s_mp_clamp(&rem);
-      --ix;
-    }
-
-    /* If we didn't find one, we're finished dividing    */
-    if(s_mp_cmp(&rem, b) < 0) 
-      break;    
-
-    /* Compute a guess for the next quotient digit       */
-    q = DIGIT(&rem, USED(&rem) - 1);
-    if(q <= DIGIT(b, USED(b) - 1) && USED(&rem) > 1)
-      q = (q << DIGIT_BIT) | DIGIT(&rem, USED(&rem) - 2);
-
-    q /= DIGIT(b, USED(b) - 1);
-
-    /* The guess can be as much as RADIX + 1 */
-    if(q >= RADIX)
-      q = RADIX - 1;
-
-    /* See what that multiplies out to                   */
-    mp_copy(b, &t);
-    if((res = s_mp_mul_d(&t, q)) != MP_OKAY)
-      goto CLEANUP;
-
-    /* 
-       If it's too big, back it off.  We should not have to do this
-       more than once, or, in rare cases, twice.  Knuth describes a
-       method by which this could be reduced to a maximum of once, but
-       I didn't implement that here.
-     */
-    while(s_mp_cmp(&t, &rem) > 0) {
-      --q;
-      s_mp_sub(&t, b);
-    }
-
-    /* At this point, q should be the right next digit   */
-    if((res = s_mp_sub(&rem, &t)) != MP_OKAY)
-      goto CLEANUP;
-
-    /*
-      Include the digit in the quotient.  We allocated enough memory
-      for any quotient we could ever possibly get, so we should not
-      have to check for failures here
-     */
-    DIGIT(&quot, 0) = q;
-  }
-
-  /* Denormalize remainder                */
-  if(d != 0) 
-    s_mp_div_2d(&rem, d);
-
-  s_mp_clamp(&quot);
-  s_mp_clamp(&rem);
-
-  /* Copy quotient back to output         */
-  s_mp_exch(&quot, a);
-  
-  /* Copy remainder back to output        */
-  s_mp_exch(&rem, b);
-
-CLEANUP:
-  mp_clear(&rem);
-REM:
-  mp_clear(&t);
-T:
-  mp_clear(&quot);
-
-  return res;
-
-} /* end s_mp_div() */
-
-/* }}} */
-
-/* {{{ s_mp_2expt(a, k) */
-
-mp_err   s_mp_2expt(mp_int *a, mp_digit k)
-{
-  mp_err    res;
-  mp_size   dig, bit;
-
-  dig = k / DIGIT_BIT;
-  bit = k % DIGIT_BIT;
-
-  mp_zero(a);
-  if((res = s_mp_pad(a, dig + 1)) != MP_OKAY)
-    return res;
-  
-  DIGIT(a, dig) |= (1 << bit);
-
-  return MP_OKAY;
-
-} /* end s_mp_2expt() */
-
-/* }}} */
-
-/* {{{ s_mp_reduce(x, m, mu) */
-
-/*
-  Compute Barrett reduction, x (mod m), given a precomputed value for
-  mu = b^2k / m, where b = RADIX and k = #digits(m).  This should be
-  faster than straight division, when many reductions by the same
-  value of m are required (such as in modular exponentiation).  This
-  can nearly halve the time required to do modular exponentiation,
-  as compared to using the full integer divide to reduce.
-
-  This algorithm was derived from the _Handbook of Applied
-  Cryptography_ by Menezes, Oorschot and VanStone, Ch. 14,
-  pp. 603-604.  
- */
-
-mp_err   s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu)
-{
-  mp_int   q;
-  mp_err   res;
-  mp_size  um = USED(m);
-
-  if((res = mp_init_copy(&q, x)) != MP_OKAY)
-    return res;
-
-  s_mp_rshd(&q, um - 1);       /* q1 = x / b^(k-1)  */
-  s_mp_mul(&q, mu);            /* q2 = q1 * mu      */
-  s_mp_rshd(&q, um + 1);       /* q3 = q2 / b^(k+1) */
-
-  /* x = x mod b^(k+1), quick (no division) */
-  s_mp_mod_2d(x, DIGIT_BIT * (um + 1));
-
-  /* q = q * m mod b^(k+1), quick (no division) */
-  s_mp_mul(&q, m);
-  s_mp_mod_2d(&q, DIGIT_BIT * (um + 1));
-
-  /* x = x - q */
-  if((res = mp_sub(x, &q, x)) != MP_OKAY)
-    goto CLEANUP;
-
-  /* If x < 0, add b^(k+1) to it */
-  if(mp_cmp_z(x) < 0) {
-    mp_set(&q, 1);
-    if((res = s_mp_lshd(&q, um + 1)) != MP_OKAY)
-      goto CLEANUP;
-    if((res = mp_add(x, &q, x)) != MP_OKAY)
-      goto CLEANUP;
-  }
-
-  /* Back off if it's too big */
-  while(mp_cmp(x, m) >= 0) {
-    if((res = s_mp_sub(x, m)) != MP_OKAY)
-      break;
-  }
-
- CLEANUP:
-  mp_clear(&q);
-
-  return res;
-
-} /* end s_mp_reduce() */
-
-/* }}} */
-
-/* }}} */
-
-/* {{{ Primitive comparisons */
-
-/* {{{ s_mp_cmp(a, b) */
-
-/* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b           */
-int      s_mp_cmp(mp_int *a, mp_int *b)
-{
-  mp_size   ua = USED(a), ub = USED(b);
-
-  if(ua > ub)
-    return MP_GT;
-  else if(ua < ub)
-    return MP_LT;
-  else {
-    int      ix = ua - 1;
-    mp_digit *ap = DIGITS(a) + ix, *bp = DIGITS(b) + ix;
-
-    while(ix >= 0) {
-      if(*ap > *bp)
-	return MP_GT;
-      else if(*ap < *bp)
-	return MP_LT;
-
-      --ap; --bp; --ix;
-    }
-
-    return MP_EQ;
-  }
-
-} /* end s_mp_cmp() */
-
-/* }}} */
-
-/* {{{ s_mp_cmp_d(a, d) */
-
-/* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d             */
-int      s_mp_cmp_d(mp_int *a, mp_digit d)
-{
-  mp_size  ua = USED(a);
-  mp_digit *ap = DIGITS(a);
-
-  if(ua > 1)
-    return MP_GT;
-
-  if(*ap < d) 
-    return MP_LT;
-  else if(*ap > d)
-    return MP_GT;
-  else
-    return MP_EQ;
-
-} /* end s_mp_cmp_d() */
-
-/* }}} */
-
-/* {{{ s_mp_ispow2(v) */
-
-/*
-  Returns -1 if the value is not a power of two; otherwise, it returns
-  k such that v = 2^k, i.e. lg(v).
- */
-int      s_mp_ispow2(mp_int *v)
-{
-  mp_digit d, *dp;
-  mp_size  uv = USED(v);
-  int      extra = 0, ix;
-
-  d = DIGIT(v, uv - 1); /* most significant digit of v */
-
-  while(d && ((d & 1) == 0)) {
-    d >>= 1;
-    ++extra;
-  }
-
-  if(d == 1) {
-    ix = uv - 2;
-    dp = DIGITS(v) + ix;
-
-    while(ix >= 0) {
-      if(*dp)
-	return -1; /* not a power of two */
-
-      --dp; --ix;
-    }
-
-    return ((uv - 1) * DIGIT_BIT) + extra;
-  } 
-
-  return -1;
-
-} /* end s_mp_ispow2() */
-
-/* }}} */
-
-/* {{{ s_mp_ispow2d(d) */
-
-int      s_mp_ispow2d(mp_digit d)
-{
-  int   pow = 0;
-
-  while((d & 1) == 0) {
-    ++pow; d >>= 1;
-  }
-
-  if(d == 1)
-    return pow;
-
-  return -1;
-
-} /* end s_mp_ispow2d() */
-
-/* }}} */
-
-/* }}} */
-
-/* {{{ Primitive I/O helpers */
-
-/* {{{ s_mp_tovalue(ch, r) */
-
-/*
-  Convert the given character to its digit value, in the given radix.
-  If the given character is not understood in the given radix, -1 is
-  returned.  Otherwise the digit's numeric value is returned.
-
-  The results will be odd if you use a radix < 2 or > 62, you are
-  expected to know what you're up to.
- */
-int      s_mp_tovalue(char ch, int r)
-{
-  int    val, xch;
-  
-  if(r > 36)
-    xch = ch;
-  else
-    xch = toupper(ch);
-
-  if(isdigit(xch))
-    val = xch - '0';
-  else if(isupper(xch))
-    val = xch - 'A' + 10;
-  else if(islower(xch))
-    val = xch - 'a' + 36;
-  else if(xch == '+')
-    val = 62;
-  else if(xch == '/')
-    val = 63;
-  else 
-    return -1;
-
-  if(val < 0 || val >= r)
-    return -1;
-
-  return val;
-
-} /* end s_mp_tovalue() */
-
-/* }}} */
-
-/* {{{ s_mp_todigit(val, r, low) */
-
-/*
-  Convert val to a radix-r digit, if possible.  If val is out of range
-  for r, returns zero.  Otherwise, returns an ASCII character denoting
-  the value in the given radix.
-
-  The results may be odd if you use a radix < 2 or > 64, you are
-  expected to know what you're doing.
- */
-  
-char     s_mp_todigit(int val, int r, int low)
-{
-  char   ch;
-
-  if(val < 0 || val >= r)
-    return 0;
-
-  ch = s_dmap_1[val];
-
-  if(r <= 36 && low)
-    ch = tolower(ch);
-
-  return ch;
-
-} /* end s_mp_todigit() */
-
-/* }}} */
-
-/* {{{ s_mp_outlen(bits, radix) */
-
-/* 
-   Return an estimate for how long a string is needed to hold a radix
-   r representation of a number with 'bits' significant bits.
-
-   Does not include space for a sign or a NUL terminator.
- */
-int      s_mp_outlen(int bits, int r)
-{
-  return (int)((double)bits * LOG_V_2(r) + 0.5);
-
-} /* end s_mp_outlen() */
-
-/* }}} */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* HERE THERE BE DRAGONS                                                  */

mercurial